International Journal of Theoretical Physics

, Volume 27, Issue 4, pp 451–472 | Cite as

Bayesian approach to thermostatistics

  • B. H. Lavenda
Article

Abstract

Bayes' theorem is used to derive the dual of the Gibbs formulation of statistical thermodynamics. An asymptotic analysis is performed, akin to Khinchin's use of the central limit theorem, to determine approximate expressions for the moment-generating functions. The prior densities, which are determined by equating the maximum-likelihood estimates with the moment expressions in the asymptotic limit, satisfy Jeffreys' invariant properties of improper prior densities.

Keywords

Field Theory Elementary Particle Quantum Field Theory Limit Theorem Central Limit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnett, V. (1973).Comparative Statistical Inference, p. 131, Wiley, London.Google Scholar
  2. Blanc-Lapierre, A., and Tortrat, A. (1956). InProceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, pp. 145–170.Google Scholar
  3. Bunimovich, L. A., and Sinai, Ya. G. (1981).Communications in Mathematical Physics,78, 479.Google Scholar
  4. Carathéodory, C. (1909).Mathematical Annalen,67.Google Scholar
  5. Carathéodory, C. (1925).Sitzungber. Preuss. Akal. Wiss. 1925, 39.Google Scholar
  6. Chernoff, H. (1956).Annals of Mathematical Statistics,27, 1.Google Scholar
  7. Fisher, R. A. (1922).Phylosophical Transactions of the Royal Socity of London A,222, 309.Google Scholar
  8. Fisher, R. A. (1925).Proceedings of the Cambridge Philosophical Society,22, 700.Google Scholar
  9. Fowler, R. H. (1936).Statistical Mechanics, 2nd ed., Cambridge University Press, Cambridge.Google Scholar
  10. Gauss, K. F. (1963).Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections, pp. 253–259, Dover, New York.Google Scholar
  11. Gibbs, J. W. (1980).Elementary Principles in Statistical Mechanics, Scribner, New York (Reprinted, Yale University Press, New Haven, 1948).Google Scholar
  12. Gnedenko, B. V., and Kolmogorov, A. N. (1954).Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Reading, Massachusetts.Google Scholar
  13. Huang, K. (1963).Statistical Mechanics, pp. 206–213, Wiley, New York.Google Scholar
  14. Jeffreys, H. (1961).Theory of Probability, 3rd ed., Chapter 3, Clarendon, Oxford.Google Scholar
  15. Jeffreys, H. (1973).Scientific Inference, 3rd ed., p. 31, Cambridge University Press, Cambridge.Google Scholar
  16. Khinchin, A. I. (1949).Mathematical Foundations of Statistical Mechanics, p. 37, Dover, New York.Google Scholar
  17. Kullback, S. (1959).Information Theory and Statistics, p. 18, Dover, New York.Google Scholar
  18. Landau, L. D., and Lifshitz, E. M. (1969).Statistical Physics, 2nd ed., p. 353, Pergamon Press, Oxford.Google Scholar
  19. Landsberg, P. T. (1956).Reviews of Modern Physics,28, 363.Google Scholar
  20. Lavenda, B. H. (1987a).International Journal of Theoretical Physics,26, 1069.Google Scholar
  21. Lavenda, B. H. (1987b). On the phenomenological basis of statistical thermodynamics,Journal of the Physics and Chemistry of Solids, in press.Google Scholar
  22. Lavenda, B. H., and Scherer, C. (1987a). The role of statistical inference in equilibrium and nonequilibrium thermodynamics,Rivista Nuovo Cimento, in press.Google Scholar
  23. Lavenda, B. H., and Scherer, C. (1987b). The statistical inference approach to generalized thermodynamics: I. Statistics and II. Thermodynamics,Nuovo Cimento B, in press.Google Scholar
  24. Lindley, D. V. (1970).Introduction to Probability and Statistics, Part 2, p. 139, Cambridge Univeristy Press, Cambridge.Google Scholar
  25. Mandelbrot, B. (1956).IRE Transactions on Information Theory,IT-2, 190.Google Scholar
  26. Mandelbrot, B. (1962).Annals of Mathematical Statistics,33, 1021.Google Scholar
  27. Mandelbrot, B. (1964).Journal of Mathematical Physics,5, 164.Google Scholar
  28. Perring, F. (1938).Mécanique Statistique Quantique, Chapter 3, Section 12, Gauthier-Villars, Paris.Google Scholar
  29. Planck, M. (1954).Treatise on Thermodynamics, rd ed., Dover, New York.Google Scholar
  30. Savage, L. J. (1962). InThe Foundations of Statistical Inference, p. 15, Methuen, London.Google Scholar
  31. Sirovich(1971).Google Scholar
  32. Tisza and Quay (1963).Google Scholar
  33. Szilard, L. (1925).Zeitschrift für Physik,32, 753.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • B. H. Lavenda
    • 1
  1. 1.Università di CamerinoCamerinoItaly

Personalised recommendations