Toward a quantitative theory of self-generated complexity

Abstract

Quantities are defined operationally which qualify as measures of complexity of patterns arising in physical situations. Their main features, distinguishing them from previously used quantities, are the following: (1) they are measuretheoretic concepts, more closely related to Shannon entropy than to computational complexity; and (2) they are observables related to ensembles of patterns, not to individual patterns. Indeed, they are essentially Shannon information needed to specify not individual patterns, but either measure-theoretic or algebraic properties of ensembles of patterns arising ina priori translationally invariant situations. Numerical estimates of these complexities are given for several examples of patterns created by maps and by cellular automata.

This is a preview of subscription content, access via your institution.

References

  1. Alekseev, V, M., and Yakobson, M. V. (1981).Physics Reports,75, 287.

    Google Scholar 

  2. Allouche, J.-P., and Cosnard, M. (1984). Grenoble preprint.

  3. Block, L., et al. (1980). Periodic points and topological entropy of 1-dimensional maps, inLecture Notes in Mathematics, No. 819, Springer, Berlin, 1980, p. 18.

    Google Scholar 

  4. Chaitin, G. J. (1979). Toward a mathematical definition of ‘life’, inThe Maximum Entropy Principle, R. D. Levine and M. Tribus, eds., MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  5. Christol, G., Kamae, T., Mendes France, M., and Rauzy, G. (1980).Bulletin Societé Mathematique France,108, 401.

    Google Scholar 

  6. Collet, P., and Eckmann, J.-P. (1980).Iterated Maps on the Interval as Dynamical Systems, Birkhauser, Boston.

    Google Scholar 

  7. Crutchfield, J. P., and Packard, N. H. (1983).Physica,7D, 201.

    Google Scholar 

  8. Dias de Deus, J., Dilao, R., and Noronha da Costa, A. (1984). Lissabon preprint.

  9. Eckmann, J. P., and Ruelle, D. (1985).Review of Modern Physics,57, 617.

    Google Scholar 

  10. Feigenbaum, M. (1978).Journal of Statistical Physics,19, 25.

    Google Scholar 

  11. Feigenbaum, M. (1979).Journal of Statistical Physics,21, 669.

    Google Scholar 

  12. Grassberger, P. (1984).Physica,10D, 52.

    Google Scholar 

  13. Grassberger, P., and Kantz, H. (1985).Physics Letters,113A, 235.

    Google Scholar 

  14. Grossmann, S., and Thomae, S. (1977).Zeitschrift für Naturforschung,32a, 1353.

    Google Scholar 

  15. Guckenheimer, J., and Holmes, P. (1983).Non-linear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York.

    Google Scholar 

  16. Györgyi, G., and Szepfalusy, P. (1985).Physical Review A,31, 3477; and to be published.

    Google Scholar 

  17. Hofstadter, D. R. (1979).Gödel, Escher, Bach, Vintage Books, New York.

    Google Scholar 

  18. Hogg, T., and Huberman, B. A. (1985). Order, complexity, and disorder, Palo Alto preprint,

  19. Hopcroft, J. E. and Ullman, J. D. (1979).Introduction to Automata Theory, Lanaguages, and Computation, Addison-Wesley.

  20. Martin, O., Odlyzko, A., and Wolfram, S. (1984).Communication in Mathematical Physics,93, 219.

    Google Scholar 

  21. Packard, N. (1983). Complexity of growing patterns in cellular automata, Institute of Advanced Study preprint.

  22. Schuster, H. G. (1984).Deterministic Chaos, Physik-Verlag, Weinheim, West Germany.

    Google Scholar 

  23. Shannon, C. E., and Weaver, W. (1949).The Mathematical Theory of Communication, University of Illinois Press, Urbana, Illinois.

    Google Scholar 

  24. Sinai, Ya. (1985).Commentarii Mathematici Helvetici,60, 173.

    Google Scholar 

  25. Van Emden, M. H. (1975).An Analysis of Complexity, Mathematical Centre Tracts, Amsterdam.

    Google Scholar 

  26. Wagoner, S. (1985). Is pi normal;,Mathematical Intelligencer,7, 65.

    Google Scholar 

  27. Wolfram, S. (1983).Review of Modern Physics,55, 601 (1983).

    Google Scholar 

  28. Wolfram, S. (1984a).Physica,10D, 1.

    Google Scholar 

  29. Wolfram, S. (1984b).Communications in Mathematical Physics,96, 15.

    Google Scholar 

  30. Wolfram, S. (1985). Random sequence generation by cellular automata, Institute for Advanced Study preprint.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grassberger, P. Toward a quantitative theory of self-generated complexity. Int J Theor Phys 25, 907–938 (1986). https://doi.org/10.1007/BF00668821

Download citation

Keywords

  • Entropy
  • Field Theory
  • Elementary Particle
  • Quantum Field Theory
  • Computational Complexity