Journal of Low Temperature Physics

, Volume 28, Issue 3–4, pp 369–379 | Cite as

New calculation of the acoustical mismatch in the Kapitza conductance of bulk helium

  • R. Guermeur
  • C. Jacolin


Elastic wave transmission at the interface between a substrate and liquid helium has been calculated using a model that takes into account the inhomogeneous character of the acoustical impedance in helium and in particular the existence of a solid helium layer intermediate between the substrate and bulk liquid helium. The properties of this layer (width, velocity, and attenuation of elastic waves) have a great influence on the calculated transmission. A width of about 10 Å seems to fit many quoted experimental results. The Kapitza conductanceh k derived from this model and the temperature variation ofh k agree with experimental results obtained from clean copper samples.


Attenuation Helium Great Influence Elastic Wave Layer Intermediate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. J. Challis,J. Phys. C, Proc. Phys. Soc. 7, 481 (1974).Google Scholar
  2. 2.
    T. J. B. Swanenburg and J. Wolter,Phys. Rev. Lett. 33, 882 (1974).Google Scholar
  3. 3.
    J. Buck, K. Lassmann, and W. Eisenmenger,Phys. Lett. 50, 279 (1974).Google Scholar
  4. 4.
    E. S. Sabisky and C. H. Anderson,Solid State Commun. 17, 1095 (1975).Google Scholar
  5. 5.
    H. Kinder and W. Dietsche,Phys. Rev. Lett. 33, 578 (1974).Google Scholar
  6. 6.
    W. Dietsche and H. Kinder,J. Low Temp. Phys. 23, 27 (1976).Google Scholar
  7. 7.
    C.-J. Guo and H. J. Maris,Phys. Rev. A 10, 960 (1974).Google Scholar
  8. 8.
    J. H. Scholtz, E. O. McLean, and I. Rudnick,Phys. Rev. Lett. 32, 147 (1974).Google Scholar
  9. 9.
    Marvin Chester and L. Eytel,Phys. Rev. B 13, 1069 (1976).Google Scholar
  10. 10.
    M. Revzen and L. E. H. Trainor,J. Low Temp. Phys. 23, 623 (1976).Google Scholar
  11. 11.
    E. S. Sabisky and C. H. Anderson,Phys. Rev. A 7, 790 (1973).Google Scholar
  12. 12.
    N. S. Snyder,J. Low Temp. Phys. 22, 257 (1976).Google Scholar
  13. 13.
    L. J. Challis, K. Dransfeld, and J. Wilks,Proc. R. Soc. A 260, 31 (1961).Google Scholar
  14. 14.
    J. L. Opsal and G. L. Pollack,Phys. Rev. A 9, 2227 (1974).Google Scholar
  15. 15.
    F. Wagner and M. Yaqub,Solid State Commun. 16, 79 (1975).Google Scholar
  16. 16.
    V. J. Minkiewicz, T. A. Kitchens, G. Shirane, and E. B. Osgood,Phys. Rev. A 8, 1513 (1973).Google Scholar
  17. 17.
    R. A. Reese, S. K. Sinha, T. O. Brun, and C. R. Tilford,Phys. Rev. A 3 1688 (1971).Google Scholar
  18. 18.
    J. Wilks,The Properties of Liquid and Solid Helium (Clarendon Press, Oxford, 1967), pp. 622–678.Google Scholar
  19. 19.
    J. R. Wait,Electromagnetic Waves in Stratified Media (Pergamon Press, 1962), p. 100.Google Scholar
  20. 20.
    Ch. Frenois, J. Joffrin, P. Legros, and A. Levelut,Phys. Rev. Lett. 32, 1295 (1974).Google Scholar
  21. 21.
    D. E. Commins, Technical Report 34, Department of Physics, UCLA (1972).Google Scholar
  22. 22.
    S. W. Van Sciver and O. E. Vilches,Phys. Lett. 55A, 191 (1975).Google Scholar
  23. 23.
    P. Berberich, P. Leiderer, and S. Hunklinger,J. Low Temp. Phys. 22, 61 (1976).Google Scholar
  24. 24.
    B. Lambert, D. Salin, R. Perzinsky, and J. Joffrin,J. Low Temp. Phys., this issue, preceding paper.Google Scholar
  25. 25.
    D. Cheeke and H. Ettinger,Phys. Rev. Lett. 37, 1625 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • R. Guermeur
    • 1
  • C. Jacolin
    • 1
  1. 1.Département d'ElectroniqueUniversité de ProvenceMarseilleFrance

Personalised recommendations