Astrophysics and Space Science

, Volume 224, Issue 1–2, pp 177–180 | Cite as

Structure and chemistry in the hot molecular core G34.3+0.15

  • G. H. Macdonald
  • R. J. Habing
  • T. J. Millar
Session C: High Mass Stars & Ultracompact Hii Regions


New multifrequency spatial and spectral studies of the hot molecular core associated with the ultracompact HII region G34.3+0.15 have demonstrated an extremely rich chemistry in this archetypal hot core and revealed differing spatial structure between certain species which may be a dynamical effect of chemical evolution. The structure of the hot core has been studied with the JCMT in the high excitation J=19-18 and J=18-17 lines of CH3CN and with the Nobeyama Millimetre Array at 4″ arc resolution in the J=6-5 transition. Comparison with a VLA NH3(3,3) map shows a displacement between peak emission in the two chemical species which is consistent with chemical processing on a time scale comparable to the dynamical time scale of ≃105 yrs.

A 330-360 GHz spectral survey of the hot core with the JCMT has detected 358 spectral lines from at least 46 distinct chemical species, including many typical of shocked chemistry while other species indicate abundances that reflect the chemistry of a previous cold phase. The first unambiguous detection of ethanol in hot gas has been made. Observations of 14 rotational transitions of this molecule yield a temperature of 125 K and column density ≃2×1015 cm−2. This large abundance cannot be made by purely gas-phase processes and it is concluded that ethanol must have formed by grain surface chemistry.

Key words

molecular processes ISM:clouds gas,molecules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergman, P. & Hjalmarson, Å.: 1989 in:The Physics and Chemistry of Interstellar Molecular Clouds, eds: G. Winnewisser & J.T. Armstrong, Springer-Verlag, p124.Google Scholar
  2. Charnley, S.B., Tielens, A.G.G.M. & Millar, T.J.: 1992, Astrophys. J.399, L71.Google Scholar
  3. Churchwell, E., Walmsley, C.M. & Wood, D.O.S.: 1992, Astron. & Astrophys.253, 541.Google Scholar
  4. Garay, G., Rodriguez, L.F. & van Gorkom, J.H.: 1986, Astrophys. J.309, 553.Google Scholar
  5. Heaton, B.D., Little, L.T. & Bishop, I.S.: 1989, Astron. & Astrophys.213, 148.Google Scholar
  6. Herbst, E., Millar, T.J., Wlodek, S. & Bohme, D.K.: 1989, Astr. & Astrophys.222, 205.Google Scholar
  7. Millar, T.J.: 1993 in:Dust and Chemistry in Astronomy, eds: T.J. Millar & D.A. Williams, IOP Pub, p249.Google Scholar
  8. Millar, T.J., Olofsson, H., Hjalmarson, Å. & Brown, P.D.: 1988, Astron. & Astrophys.205, L5.Google Scholar
  9. Reid, M.J. & Ho, P.T.P.: 1985, Astrophys. J.288, L17.Google Scholar
  10. Sastry, K.V.L.N., Pearson, J.C., Herbst, E. & DeLucia, F.C.: 1994, in preparation.Google Scholar
  11. Strong-Jones, F.S., Heaton, B.D. & Little, L.T.: 1991, Astron. & Astrophys.251, 263.Google Scholar
  12. Wood, D.O.S. & Churchwell, E.: 1989, Astrophys. J. Suppl.,69, 831.Google Scholar
  13. Zuckerman, B.E., Turner, B.E., Johnson, D.R., Clark, F.O., Lovas, F.J., Fourikis, N., Palmer, P., Morris, M., Lilley, A.E., Ball, J.A., Gottlieb, C.A., Litvak, M.M. & Penfield, H.: 1975, Astrophys. J.196, L99.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • G. H. Macdonald
    • 1
  • R. J. Habing
    • 1
  • T. J. Millar
    • 2
  1. 1.Electronic Engineering LaboratoryUniversity of KentCanterbury, KentEngland
  2. 2.Department of MathematicsUMISTManchesterEngland

Personalised recommendations