Journal of comparative physiology

, Volume 115, Issue 1, pp 47–59 | Cite as

Sensitivity and adaptation in R7, an ultraviolet photoreceptor, in theDrosophila retina

  • William S. Stark


Receptor deficient mutants and chromatic adaptation were used to isolate the contribution of R7 to the electroretinogram (ERG) ofDrosophila. R7 was found to be a single-peaked ultraviolet (UV) receptor (Fig. 1). Photoconversion of the UV absorbing rhodopsin (R) to its stable 470–495 nm metarhodopsin (M) was shown to elicit a long-lived negative (depolarizing) afterpotential (Fig. 3) while inactivating R7. Photoreconversion ofM toR reactivates R7 (Fig. 2) and repolarizes the ERG (Fig. 3). The intensities of light needed to elicit afterpotentials by photointerconverting R7 photopigment were found to be about 2 log units greater than for R1-6 photopigment (Fig. 4). Vitamin A deprivation decreases R7 (as well as R8) sensitivity by about 2 log units (through decreased photopigment levels) without changing spectral sensitivity shape (Fig. 5). Vitamin A deprivation further eliminates the light-induced inactivation of R7 allowing experiments designed to characterize the in vivo spectral absorption of R7M. R7M was found to have UV and 495 nm maxima (Fig. 6). No polarization sensitivity was detected in the R7 ERG component. The adaptational properties of R7 are similar to the properties previously established for R1-6 but different from the properties of R8.


Retina Spectral Sensitivity Spectral Absorption Deficient Mutant Polarization Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bishop, L.G.: An ultraviolet photoreceptor in a dipteran compound eye. J. comp. Physiol.91, 267–275 (1974)Google Scholar
  2. Burkhardt, D.: Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. exp. Biol.16, 86–109 (1962)Google Scholar
  3. Dartnall, H.J.A.: The interpretation of spectral sensitivity curves. Brit. med. Bull.9, 24–30 (1953)Google Scholar
  4. Doane, W.W.:Drosophila. In: Methods in developmental biology (ed. F.H. Wilt, N.K. Wessels). New York: Thomas Y. Crowell Co. 1967Google Scholar
  5. Eckert, H.: Die spektrale Empfindlichkeit des Komplexauges vonMusca (Bestimmung aus Messungen der optomotorischen Reaktion). Kybernetik9, 145–156 (1971)Google Scholar
  6. Eckert, H., Bishop, L.G., Dvorak, D.R.: Spectral sensitivities of identified receptor cells in the blowflyCalliphora. Naturwissenschaften63, 47–48 (1976)Google Scholar
  7. Goldsmith, T.H., Bernard, G.D.: The visual system of insects. In: Physiology of insecta, Vol. II, 2nd ed. (ed. M. Rockstein). New York: Academic Press 1974Google Scholar
  8. Goldsmith, T.H., Fernandez, H.R.: Some photochemical and physiological aspects of visual excitation in compound eyes. In: The functional organization of the compound eye (ed. C.G. Bernard). Oxford-New York: Pergamon Press 1966Google Scholar
  9. Greenberg, A.D., Honig, B., Ebrey, T.G.: Wavelength dependence of the bandwidths of visual pigment spectra. Nature (Lond.)257, 823–824 (1975)Google Scholar
  10. Hamdorf, K., Rosner, G.: Adaptation und Photoregeneration im Fliegenauge. J. comp. Physiol.86, 281–292 (1973)Google Scholar
  11. Hamdorf, K., Schwemer, J., Gogala, M.: Insect visual pigment sensitive to ultraviolet light. Nature (Lond.)231, 458–459 (1971)Google Scholar
  12. Harris, W.A., Stark, W.S.: Hereditary retinal degeneration inDrosophila melanogaster: a mutant defect associated with the phototransduction process. J. gen. Physiol.69, in press (1977)Google Scholar
  13. Harris, W.A., Stark, W.S., Walker, J.A.: Genetic dissection of the photoreceptor system in the compound eye ofDrosophila melanogaster. J. Physiol. (Lond.)256, 415–439 (1976)Google Scholar
  14. Järvilehto, M., Moring, J.: Polarization sensitivity of individual retinula cells and neurons of the flyCalliphora. J. comp. Physiol.91, 387–397 (1974)Google Scholar
  15. Kirschfeld, K., Franceschini, W.: Microspectrophotometry of fly rhabdomeres. Summary of lecture held at conference on Visual Physiology, Oct. 5–8, 1975, Günzburg, GermanyGoogle Scholar
  16. Kirschfeld, K., Lutz, B.: Lateral inhibition in the compound eye of the fly,Musca. Z. Naturforsch.29, 95–97 (1974)Google Scholar
  17. Langer, H., Thorell, B.: Microspectrophotometric assay of visual pigments in single rhabdomeres of the insect eye. In: The functional organization of the compound eye (ed. C.G. Bernard), pp. 145–149. Oxford-New York: Pergamon Press 1966Google Scholar
  18. Meffert, P., Smola, U.: Electrophysiological measurements of spectral sensitivity of central visual cells in the eye of blowfly. Nature (Lond.)260, 342–344 (1976)Google Scholar
  19. Mimura, K.: Some spatial properties in the first optic ganglion of the fly. J. comp. Physiol.105, 65–82 (1976)Google Scholar
  20. Minke, B., Wu, C.-F., Pak, W.L.: Isolation of light induced response of the central retinula cells from the electroretinogram ofDrosophila. J. comp. Physiol.98, 345–355 (1975)Google Scholar
  21. Ostroy, S.E., Wilson, M., Pak, W.L.:Drosophila rhodopsin: photochemistry extraction and differences in thenorp AP12 phototransduction mutant. Biochem. biophys. Res. Commun.59, 960–966 (1974)Google Scholar
  22. Pak, W.L., Lidington, K.J.: Fast electrical potential from a long lived, long-wavelength photoproduct of fly visual pigment. J. gen. Physiol.63, 740–756 (1974)Google Scholar
  23. Razmjoo, S., Hamdorf, K.: Visual sensitivity and the variation of total photopigment content in the blowfly photoreceptor membrane. J. comp. Physiol.105, 279–286 (1976)Google Scholar
  24. Rosner, G.: Adaptation und Photoregeneration im Fliegenauge. J. comp. Physiol.102, 269–295 (1975)Google Scholar
  25. Schümperli, R.A.: Evidence for colour vision inDrosophila melanogaster through spontaneous choice behavior. J. comp. Physiol.86, 77–94 (1973)Google Scholar
  26. Smola, U., Meffert, P.: A single-peaked UV-receptor in the eye ofCalliphora erythrocephala. J. comp. Physiol.103, 353–357 (1975)Google Scholar
  27. Snyder, A.W.: Polarization sensitivity of individual retinula cells. J. comp. Physiol.83, 331–360 (1973)Google Scholar
  28. Snyder, A.W., Pask, C.: Spectral sensitivity of dipteran retinula cells. J. comp. Physiol.84, 59–76 (1973)Google Scholar
  29. Stark, W.S.: Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments inDrosophila. J. comp. Physiol.96, 343–356 (1975)Google Scholar
  30. Stark, W.S.: Diet, vitamin A and vision inDrosophila. Submitted for Drosoph. Inf. Serv. 52 (1976)Google Scholar
  31. Stark, W.S., Hu, K.G.: Sensitivity, adaptation and function of R7, an ultraviolet receptor mDrosophila. In: Society for Neuroscience Program and Abstracts (1976), p. 1094 (abstract)Google Scholar
  32. Stark, W.S., Ivanyshyn, A.M., Hu, K.G.: Spectral sensitivities and photopigments in adaptation of fly visual receptors. Naturwissenschaften63, 513–518 (1976)Google Scholar
  33. Stark, W.S., Wasserman, G.S.: Wavelength-specific ERG characteristics of pigmented- and whiteeyed strains ofDrosophila. J. comp. Physiol.91, 427–441 (1974)Google Scholar
  34. Stark, W.S., Zitzmann, W.G.: Isolation of adaptation mechanisms and photopigment spectra by vitamin A deprivation inDrosophila. J. comp. Physiol.105, 15–27 (1976)Google Scholar
  35. Stavenga, D.G., Zantema, A., Kuiper, J.W.: Rhodopsin processes and the function of the pupil mechanism in flies. In: Biochemistry and physiology of visual pigments (ed. H. Langer). BerlinHeidelberg-New York: Springer 1973Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • William S. Stark
    • 1
  1. 1.Department of PsychologyThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations