Skip to main content
Log in

Component activities in the system thorium nitrate-nitric acid-water at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The equilibrium composition of the vapor above thorium nitrate-nitric acid-water mixtures has been studied as a function of the concentrations of thorium nitrate and nitric acid using a transpiration technique. At 25°C, the thorium nitrate concentrations m T ranged from 0.1 to 2.5 molal and the nitric acid concentrations m N from 0.3 to 25 modal. The vapor pressure of the nitric acid was found to increase with increasing thorium nitrate concentration for a constant molality of nitric acid in aqueous solution. At constant m T , the nitric acid vapor pressure was particularly enhanced at low nitric acid concentrations. The water vapor pressures decreased regularly with increasing concentrations of both nitric acid and thorium nitrate. The experimental data were fitted to Scatchard's ion-component model, and to empirical multiparameter functions. From the fitting parameters, and available literature data for the nitric acid-water and thorium nitrate-water systems at 25°C, expressions were calculated for the variation of water and thorium nitrate activities, as functions of the nitric acid and thorium nitrate concentrations, using the Gibbs-Duhem equation. Calculated values for the thorium nitrate activities were strongly dependent on the form of the function originally used to fit the vapor pressure data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Pitzer and J. J. Kim,J. Am. Chem. Soc. 96, 5701 (1974).

    Google Scholar 

  2. R. M. Pytkowicz,Activity Coefficients in Electrolyte Solutions, Vol. 1 and 2, (CRC Press Inc. Boca Raton, Florida, 1979).

    Google Scholar 

  3. M. H. Lietzke and R. W. Stoughton,J. Inorg. Nucl. Chem. 36, 1315 (1974).

    Google Scholar 

  4. R. M. Rush and J. S. Johnson,J. Chem. Thermodyn. 3, 779 (1971).

    Google Scholar 

  5. S. Banerjee, E. Critoph, and R. G. Hart,Can. J. Chem. Eng. 53, 291 (1975).

    Google Scholar 

  6. A. Apelblat, D. Azoulay, and A. Sahar,JCS Faraday I 69, 1618 (1973).

    Google Scholar 

  7. A. Apelblat, D. Azoulay, and A. Sahar,JCS Faraday I 69, 1624 (1973).

    Google Scholar 

  8. A. N. Efimov, M. I. Zhikharev, Yu. P. Zhirnov, and A. Ya. Chilikin,Russ. J. Phys. Chem. (Eng. Trans.) 47, 1208 (1973).

    Google Scholar 

  9. J. R. Ferraro, L. I. Katzin, and G. Gibson,J. Am. Chem. Soc. 76, 909 (1954).

    Google Scholar 

  10. J. R. Hebert and M. W. Lister, unpublished report MX-185 (1945). Results quoted in: W. Morgan, AECL-508 (1958).

  11. A. V. Nikolaev, A. E. Ryabinin, and Yu. A. Afanas'ev,Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk (3), 129 (1966).

  12. W. Davis, Jr. and H. J. de Bruin,J. Inorg. Nucl. Chem. 26, 1069 (1964).

    Google Scholar 

  13. A. I. Vogel,A Textbook of Quantitative Inorganic Analysis 3rd. ed., (Longmans, London, 1962), p. 442.

    Google Scholar 

  14. W. Davis, Jr., P. S. Lawson, H. J. de Bruin, and J. Mrochek,J. Phys. Chem. 69, 1904 (1965).

    Google Scholar 

  15. M. A. Yakimov and V. Ya. Mishin,Sov. Radiochem. (Eng. Trans.) 6, 523 (1964).

    Google Scholar 

  16. G. Scatchard, R. M. Rush, and J. S. Johnson,J. Phys. Chem. 74, 3786 (1970).

    Google Scholar 

  17. R. A. Robinson and B. J. Levien,Trans. Proc. Roy. Soc. New Zealand 76, 295 (1947).

    Google Scholar 

  18. K. S. Pitzer and G. Mayorga,J. Phys. Chem. 77, 2300 (1973).

    Google Scholar 

  19. K. S. Pitzer,J. Solution Chem. 4, 249 (1975).

    Google Scholar 

  20. H. A. Kuppers, Dissertation, Rheinish-Westfalischen Technischen Hochschule, Aachen (1964).

  21. C. L. Burdick and E. S. Freed,J. Am. Chem. Soc. 43, 518 (1921).

    Google Scholar 

  22. R. Flatt and F. Benguerel,Helv. Chem. Acta 45, 1765 (1962).

    Google Scholar 

  23. A. K. Covington and J. E. Prue,J. Chem. Soc. 1567 (1957).

  24. F. Hartmann and P. Rosenfeld,Z. Phys. Chem. 164, 377 (1933).

    Google Scholar 

  25. V. B. Parker,Thermal Properties of Aqueous Uni-univalent Electrolytes, U. S. Nat. Bureau of Standards Report NSRDS-NBS 2 (1965).

  26. J. A. Duisman and S. A. Stern,J. Chem. Eng. Data 14, 457 (1969).

    Google Scholar 

  27. G. L. Antipenko, E. S. Beletskaia, and A. G. Krylova,J. Appl. Chem. USSR (Eng. Trans.) 31, 847 (1958).

    Google Scholar 

  28. G. S. Kell, inWater: A Comprehensive Treatise, F. Franks ed., (Plenum Press, New York, 1972), p. 384.

    Google Scholar 

  29. O. Redlich, W. E. Gargrave, and W. D. Krostek,Ind. Eng. Chem. Fundamentals 7, 211 (1968).

    Google Scholar 

  30. R. Haase, K.-H. Ducker, and H. A. Kuppers,Ber. Bunsenges. Physik. Chem. 69, 97 (1965).

    Google Scholar 

  31. L. G. Sillen and A. E. Martell, ‘Stability Constants of Metal-Ion Complexes,’The Chemical Society, Special Publications 17, (London, 1964).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Issued as AECL-7461.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemire, R.J., Brown, C.P. Component activities in the system thorium nitrate-nitric acid-water at 25°C. J Solution Chem 11, 203–220 (1982). https://doi.org/10.1007/BF00667602

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00667602

Key words

Navigation