Archiv für Gynäkologie

, Volume 221, Issue 4, pp 345–366 | Cite as

Histochemische und histologische Untersuchungen am menschlichen Eileiter unter verschiedenen hormonellen Einflüssen

I. ATPase-Nachweis mit besonderer Berücksichtigung reaktiver Zilienzellen
  • P. Kugler
  • K. -H. Wrobel
  • H. J. Wallner
  • U. Heinzmann
Article

Zusammenfassung

Die lichtmikroskopisch-histochemisch erfaßbare topographische Verteilung der Mg++-aktivierbaren Adenosintriphosphatase (ATPase) wurde in den Eileitern von 18 Frauen im Alter zwischen 23 und 62 Jahren untersucht. Ein Teil der Probandinnen war hormonell vorbehandelt.

Die ATPase-Aktivität in den Kinozilien der Endosalpinx repräsentiert die Dyneinwirkung und kann als Parameter für die Intensität der Zilienmotilität angesehen werden. Östrogene und Gestagene beeinflussen in unterschiedlicher Weise die ATPase- und damit die Zilienaktivität. Jeweils alle Zilien einer Zelle reagieren in der gleichen Weise; das Verhältnis von negativen zu positiven Ziliensäumen in den einzelnen Eileiterregionen unterliegt allerdings charakteristischen Veränderungen und läßt sich in der Regel gut mit bekannten Vorkommnissen während des Eitransportes korrelieren.

Postovulatorisch nimmt die Anzahl positiver Ziliensäume (Reaktionseinheiten) in Ampulle und Infundibulum im Vergleich zur präovulatorischen Phase stark zu. Mit Einschränkung gilt dies auch für den Isthmus. Eileiter von Frauen in der Postmenopause enthalten eine geringe Anzahl von Reaktionseinheiten.

Frühpostovulatorische kurzzeitige exogene Ostrogenzufuhr führt zu einer auffallend großen Anzahl von positiven Ziliensäumen in der gesamten Tube. Eine ähnliche Behandlung in der 1. Zyklushälfte bedingt eine starke Reduzierung der Reaktionseinheiten in der Ampulle. Progesteronzufuhr in der Zyklusmitte aktiviert die Zilien-ATPase im Isthmus. Niedrig dosierte Lynestrenolgaben (Minipille) haben in der 1. Zyklushälfte einen starken Rückgang der Reaktionseinheiten in allen Tubenabschnitten zur Folge; eine solche Behandlung bedingt zum Zeitpunkt der Ovulation ein Zilienreaktionsmuster, das der durch exogene Hormonzufuhr nicht beeinflußten 1. Zyklushälfte entspricht. Die Behandlung mit einem antiovulatorischen Kombinationspräparat erbringt eine große Anzahl positiver Ziliensäume im gesamten Eileiter.

Histochemical and histological investigations on the human Fallopian tube under different hormonal influences

I. Demonstration of ATPase with special reference to reactive ciliated cells

Summary

The localization of the Mg++-activated adenosine triphosphatase (ATPase) in the human Fallopian tube has been studied by means of histochemical methods. The samples were obtained from 18 women in the age from 23–62 years. Some of them were treated by various steroid hormones.

Endosalpinx ciliary ATPase-activity represents dynein and is therefore an indicator of ciliary motility. Estrogens and gestagens have a different influence on the ATPase-activity. All cilia of one ciliated cell react in the same manner and may be regarded as a reaction unit. The relation of negative to positive ciliary borders differs characteristically in the tubal isthmus, ampulla and infundibulum and coincides with commonly known phenomena of egg transport through the oviduct.

Postovulatory, reaction units increase in ampulla and infundibulum compared with the proliferative phase. The oviducts of postmenopausal women possess but a scanty outfit of reaction units.

Short-time treatment with estrogen in the early secretory phase results in a great number of reaction units in all tubal segments; a similar treatment in the proliferative phase diminishes the reaction units in the ampulla. Midcycle progesterone treatment activates the ciliary ATPase in the isthmus. Low doses of lynestrenol (minipill) in the proliferative phase leads to a decrease of reaction units in all tubal segments; the pattern of ciliary reaction under low doses of lynestrenol at the time of ovulation coincides with that of the proliferative phase. Treatment with a contraceptive steroid (0,05 mg ethinylestradiol and 0,25 d-norgestrel) causes a considerable activation of the ciliary ATPase in all portions of the oviduct.

Key words

Fallopian tube Ciliated cells ATPase-reaction Egg transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Afzelius, B.: Electron microscopy of the sperm tail. Results obtained with a new fixative. J. biochem. biophys. Cytol.5, 269–278 (1959)Google Scholar
  2. 2.
    Anderson, D. H.: Lymphatics of the Fallopian tube of the sow. In: Contributions to Embryology. Pub. No. 380. Pittsburgh, Carnegie Institute19, 135–147 (1927)Google Scholar
  3. 3.
    Banerjee, R. C., Brazeau, P., Saucier, R., Husain, S. M.: Effect of norethindrone (17-ethynyl-17β-hydroxy-4-estren-3-one) and norgestrel (dl-13β-ethyl-17-ethynyl-17β-hydroxy-4-gonen-3-one) on tissue distribution of3H-estradiol-17β in ovariectomized rats. Steroids21, 135–145 (1973)Google Scholar
  4. 4.
    Bergsjo, P., Langengen, H., Aas, J.: Tubal pregnancies in women using progestagen-only contraception. Acta obstet. gynec. scand.53, 377–378 (1974)Google Scholar
  5. 5.
    Black, D. L., Asdell, S. A.: Transport through the rabbit oviduct. Amer. J. Physiol.192, 63–68 (1958)Google Scholar
  6. 6.
    Blandau, R. J.: Gamete transport. Comparative aspects. In: The mammalian oviduct (eds. E. S. E. Hafez, R. J. Blandau). Chicago: University of Chicago Press 1969Google Scholar
  7. 7.
    Blandau, R. J.: New developments on the mechanism of gamete transport in the mammalian oviduct. Excerpta Medica Int. Congr. Ser.234b, 105 (1971)Google Scholar
  8. 8.
    Blandau, R. J.: Gamete transport in the female mammal. In: Handbook of physiology. Section 7: Endocrinology, Vol. II: Female reproductive system, part 2 (ed. R. O. Greep). Washington, D.C.: American Physiological Society 1973Google Scholar
  9. 9.
    Blandau, R. J., Boling, J. L., Halbert, S., Verdugo, P.: Methods for studying oviductal physiology. Gynecol. Invest.6, 123–145 (1975)Google Scholar
  10. 10.
    Boling, J. L., Blandau, R. J.: The role of estrogens in egg transport through the ampullae of oviducts of castrate rabbits. Fertil. Steril.22, 544–551 (1971)Google Scholar
  11. 11.
    Boling, J. L., Blandau, R. J.: Egg transport through the ampullae of the oviducts of rabbits under various experimental conditions. Biol. Reprod.4, 174–184 (1971)Google Scholar
  12. 12.
    Bonnar, J.: Progestagen-only contraception and tubal pregnancies. Brit. med. J.1, 287 (1974)Google Scholar
  13. 13.
    Brenner, R. M., Anderson, R. G. W.: Endocrine control of ciliogenesis in the primate oviduct. In: Handbook of physiology. Section 7: Endocrinology, Vol. II: Female reproductive system, part 2 (ed. R. O. Greep). Washington, D. C.: American Physiological Society, 1973Google Scholar
  14. 14.
    Brenner, R. M., Bell, M., Im, M., Adachi, K.: ATPase activities during estrogen driven ciliogenesis in rhesus monkey oviduct. Cell Biol.39, 162A-163A (1968)Google Scholar
  15. 15.
    Brokaw, C. J.: Movement and nucleoside polyphosphatase activity of isolated flagella fromPolytoma uvella. Exp. Cell. Res.22, 151–162 (1961)Google Scholar
  16. 16.
    Brokaw, C. J.: Adenosine triphosphate usage by flagella. Science156, 76–78 (1967)Google Scholar
  17. 17.
    Brokaw, C. J.: Flagellar movement: A sliding filament model. Science178, 455–462 (1972)Google Scholar
  18. 18.
    Carsten, M. E.: Prostaglandin's part in regulating uterine contraction by transport of calcium. In: The prostaglandins. — Clinical applications in human reproduction (ed. E. M. Southern). Mt. Kisco, N.Y.: Futura Publishing 1972Google Scholar
  19. 19.
    Chatkoff, M. L.: A biophysicist's view of ovum transport. Gynecol. Invest.6, 105–122 (1975)Google Scholar
  20. 20.
    Chihal, H. J. W., Peppler, R. D., Dickey, R. P.: Estrogen potency of oral contraceptive pills. Amer. J. Obstet. Gynec.121, 75–83 (1975)Google Scholar
  21. 21.
    Clyman, M. J.: Electron microscopy of the human Fallopian tube. Fertil. Steril.17, 281–301 (1966)Google Scholar
  22. 22.
    Croxatto, H. B., Oritz, M.-E. S.: Egg transport in the Fallopian tube. Gynecol. Invest.6, 215–225 (1975)Google Scholar
  23. 23.
    Deimling, O. H. von: Die Darstellung phosphatfreisetzender Enzyme mittels Schwermetall-Simultan-Methode. Histochemie4, 48–55 (1964)Google Scholar
  24. 24.
    Eckert, R., Murakami, A.: Calcium dependence of ciliary activity in the oviduct of the salamander Necturus. J. Physiol.226, 699–711 (1972)Google Scholar
  25. 25.
    Erb, H., Wenner, R.: The influence of hormonal and neural agents on the motility of the Fallopian tube. Excerpta Medica Int. Congr. Ser.278, 778–779 (1973)Google Scholar
  26. 26.
    Fawcett, D. W., Porter, K. R.: A study of fine structure of ciliated epithelia. J. Morph.94, 221–281 (1954)Google Scholar
  27. 27.
    Ferenczy, A., Richart, R. M., Agate, F. J., Pukersson, M. L., Dempsey, E. W.: Scanning electron microscopy of human Fallopian tube. Science175, 783–784 (1972)Google Scholar
  28. 28.
    Flickinger, G. L., Muechler, E. K., Mikhail, G.: Estradiol receptors in the human Fallopian tube. Fertil. Steril.25, 900–903 (1974)Google Scholar
  29. 29.
    Friedrich, F., Breitenecker, G., Salzer, H., Holzner, J. H.: The progesterone content of the fluid and the activity of the steroid-3β-ol-dehydrogenase within the wall of the ovarian follicles. Acta endocrinol. (Kbh.)76, 343–352 (1974)Google Scholar
  30. 30.
    Friedrich, E., Keller, E., Jaeger-Whitegiver, E. R., Schindler, A. E.: Die Wirkung von 0,5 mg Lynestrenol auf den normalen Zyklus. Arch. Gynäk.219, 607–608 (1975)Google Scholar
  31. 31.
    Gaddum-Rosse, P., Blandau, R. J., Thiersch, J. B.: Ciliary activity in the human andMacaca nemestrina oviduct. Amer. J. Anat.138, 269–275 (1973)Google Scholar
  32. 32.
    Gaddum-Rosse, P., Rumery, R. E., Blandau, R. J., Thiersch, J. B.: Studies on the mucosa of the postmenopausal oviducts: surface appearance, ciliary activity and the effect of estrogen treatment. Fertil. Steril.26, 951–969 (1975)Google Scholar
  33. 33.
    Gibbons, I. R.: Studies on the protein components of the cilia fromTetrahymena pyriformis. Proc. nat. Acad. Sci. USA50, 1002–1010 (1963)Google Scholar
  34. 34.
    Gibbons I. R.: Chemical dissection of cilia. Arch. Biol.76, 317–352 (1965)Google Scholar
  35. 35.
    Gibbons, I. R.: Studies on the adenosine triphosphatase activity of 14 S and 30 S dynein from cilia of Tetrahymena. J. Biol. Chem.241, 5590–5596 (1966)Google Scholar
  36. 36.
    Gibbons, I. R., Grimstone, A. V.: On flagellar structure in certain flagellates. J. biochem. biophys. Cytol.7, 697–715 (1960)Google Scholar
  37. 37.
    Gomori, G.: Histochemical specificity of phosphatases. Proc. Soc. exp. Biol. (N.Y.)70, 7–11 (1949)Google Scholar
  38. 38.
    Greenwald, G. S.: A study of the transport of ova through the rabbit oviduct. Fertil. Steril.12, 80–95 (1961)Google Scholar
  39. 39.
    Hafez, E. S. E.: Endocrine control of the structure and function of the mammalian oviduct. In: Handbook of physiology. Section 7: Endocrinology, Vol. II: Female reproductive system, part 2 (ed. R. O. Greep). Washington, D. C.: American Physiological Society 1973Google Scholar
  40. 40.
    Harper, M. J. K.: Egg movement through the ampullar region of the Fallopian tube of the rabbit. Proc. Fourth Int. Congr. Anim. Reprod., p. 375. The Hague, N.V.: Drukkerij Trio 1961Google Scholar
  41. 41.
    Harper, M. J. K.: The mechanisms involved in the movement of newly ovulated eggs through the ampulla of the rabbit Fallopian tube. J. Reprod. Fertil.2, 522–524 (1961)Google Scholar
  42. 42.
    Harper, M. J. K.: Transport of eggs in cumulus through the ampulla of the rabbit oviduct in relation to day of pseudopregnancy. Endocrinology77, 114–123 (1965)Google Scholar
  43. 43.
    Harper, M. J. K.: Hormonal control of transport of eggs in cumulus through the ampulla of the rabbit oviduct. Endocrinology78, 568–574 (1966)Google Scholar
  44. 44.
    Harper, M. J. K., Bennett, J. P., Boursnell, J. G., Rowson, L. E. A.: An autoradiographic method for the study of egg transport in the rabbit Fallopian tube. J. Reprod. Fertil.1, 249–267 (1960)Google Scholar
  45. 45.
    Hartmann, C. G.: Origin of ovarian adhesions from organized liquor folliculi in the rhesus monkey. Surg. Gynec. Obstet.78, 391–396 (1944)Google Scholar
  46. 46.
    Hashimoto, M., Shimoyama, T., Kosaka, M., Komori, A., Hirasawa, T., Yokoyama, Y., Akashi, K.: Electron microscopic studies on the epithelial cells of the human Fallopian tube. Report I. J. jap. obstet. gynec. Soc.9, 200 (1962)Google Scholar
  47. 47.
    Hashimoto, M., Shimoyama, T., Kosaka, M., Komori, A., Hirasawa, T., Yokoyama, Y., Akashi, K.: Electron microscopic studies on the epithelial cells of the human Fallopian tube. Report II. J. jap. obstet. gynec. Soc.11, 92–100 (1964)Google Scholar
  48. 48.
    Horstmann, E., Stegner, H. E.: Harn- und Geschlechtsapparat. IV. Tube, Vagina und äußere weibliche Genitalorgane, Bd. VII/1. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  49. 49.
    Iramain, C. A., Smith, R. G., Buttram, V. C., O'Malley, B. W.: Progesterone-binding studies in the human oviduct. Fertil. Steril.26, 205 (1975)Google Scholar
  50. 50.
    Jarvinen, P. A., Ylikorkala, O., Ylostalo, P.: Low dose lynestrenol as a contraceptive: influence on ovarian function. Ann. clin. Res.6, 109–114 (1974)Google Scholar
  51. 51.
    Kemeter, P., Salzer, H., Breitenecker, G., Friedrich, F.: Progesterone, oestradiol-17β and testosterone levels in the follicular fluid of tertiary follicles and Graafian follicles of human ovaries. Acta endocr. (Kbh.)80, 686–704 (1975)Google Scholar
  52. 52.
    Kissel, J. H., Rosenfeld, M. G., Chase, L. R., O'Malley, B. W.: Response of chick oviduct adenyl cyclase to steroid hormones. Endocrinology86, 1019–1023 (1970)Google Scholar
  53. 53.
    Koester, H.: Ovum transport. In: Mammalian reproduction (eds. H. Gibian, E. J. Plotz). New York: Springer 1970Google Scholar
  54. 54.
    Kontula, K., Jänne, O., Vihko, R., Jager, E. de, Visser, J. de, Zeelen, F.: Progesterone-binding proteins: in vitro binding and biological activity of different steroidal ligands. Acta endocr. (Kbh.)78, 574–592 (1975)Google Scholar
  55. 55.
    Kumra, R., Sen, K. K., Hingorami, V., Talwer, G. P.: Binding of progesterone in the human Fallopian tube. Amer. J. Obstet. Gynec.119, 762–766 (1974)Google Scholar
  56. 56.
    Legerlotz, C.: Untersuchungen über Tubensekretion und Eitransport im Tierversuch mit radioaktiven Sulfat-Ionen. Arch. Gynäk.207, 169–172 (1969)Google Scholar
  57. 57.
    Leyendecker, G., Geppert, W., Nocke, W., Ufer, J.: Untersuchungen zur Pharmakokinetik von Östradiol-17β, Östradiol-Benzoat, Ostradiol-Valerianat und Östradiol-Undezylat bei der Frau: Der Verlauf der Konzentrationen von Östradiol-17β, Östron, LH und FSH im Serum. Geburtsh. Frauenheilk.35, 370–374 (1975)Google Scholar
  58. 58.
    Leyendecker, G., Hinckers, K., Nocke, W., Plotz, E. J.: Hypophysäre Gonadotropine und ovarielle Steroide im Serum während des normalen menstruellen Cyclus und bei Corpus-luteum-Insuffizienz. Arch. Gynäk.218, 47–64 (1975)Google Scholar
  59. 59.
    Lippes, J.: Applied physiology of the uterine tube. In: Obstetrics and gynecology annual (ed. R. M. Wynn), Vol. 4. New York: Appleton-Century Crofts 1975Google Scholar
  60. 60.
    Ludwig, H., Wolf, H., Metzger, H.: Zur Ultrastruktur der Tubeninnenfläche im Rasterelektronenmikroskop. Arch. Gynäk.212, 380–396 (1972)Google Scholar
  61. 61.
    Murakami, A., Eckert, R.: Cilia: Activation coupled to mechanical stimulation by calcium influx. Science175, 1375–1377 (1972)Google Scholar
  62. 62.
    Murakami, A., Machemer-Röhnisch, S., Eckert, R.: Stimulation of ciliary activity by low levels of extracellular adenine nucleotides in amphibian oviduct. Exper. Cell Res.85, 154–158 (1974)Google Scholar
  63. 63.
    Ogra, S. S., Kirton, T. K., Tomasi, T. B., Lippes, J.: Prostaglandins in the human Fallopian tube. Fertil. Steril.25, 250–255 (1974)Google Scholar
  64. 64.
    Overbeck, L.: Die Feinstruktur des Tubenepithels im mensuellen Zyklus. Geburtsh. Frauenheilk.171, 241–260 (1969)Google Scholar
  65. 65.
    Patek, E.: Epithelium of the human Fallopian tube. A surface ultrastructural and cytochemical study. Acta obstet. gynec. scand.53, Suppl. 31, 1–28 (1974)Google Scholar
  66. 66.
    Patek, E., Nilsson, L., Johannisson, E.: Scanning electron microscopic study of the human Fallopian tube. I. The proliferative and secretory stages. Fertil. Steril.23, 459–465 (1972)Google Scholar
  67. 67.
    Patek, E., Nilsson, L., Johannisson, E.: Scanning electron microscopic study of the human Fallopian tube. II. Fetal life reproductive life and postmenopause. Fertil. Steril.23, 719–733 (1972)Google Scholar
  68. 68.
    Patek, E., Nilsson, L., Johannisson, E., Hellema, M., Bout, J.: Scanning electron microscopic study of the human Fallopian tube. III. The effect of mid-pregnancy and various steroids. Fertil. Steril.24, 31–43 (1973)Google Scholar
  69. 69.
    Pauerstein, C. J., Anderson, V., Chatkoff, M. L., Hodgson, B. J.: Effect of estrogen and progesterone on the time-course of tubal ovum transport in rabbits. Amer. J. Obstet. Gynec.120, 299–308 (1974)Google Scholar
  70. 70.
    Pauerstein, C. J., Hodgson, B. J., Kramen, M. A.: The anatomy and physiology of the oviduct. In: Obstetrics and gynecology annual (ed. R. M. Wynn), Vol. 3. New York: Appleton-Century Crofts 1974Google Scholar
  71. 71.
    Rhea, R. P., Anderson, B., Norma, B., Kim, B. S., Rosenberg, M. D.: Biochemical, electronmicroscopic and cytochemical studies of ATPase localization in avian, murine, and human oviducts. Fertil. Steril.25, 788–808 (1974)Google Scholar
  72. 72.
    Robertson, D. M., Landgren, B.-M., Guerrero, R.: Oestradiol receptor levels in the human Fallopian tube during the menstrual cycle. Acta endocr. (Kbh.)80, 705–718 (1975)Google Scholar
  73. 73.
    Rosenfeld, M. G., O'Malley, B. W.: Steroid hormones: effects on adenyl cyclase activity and adenosine 3′,5′-monophosphate in the target tissue. Science168, 253–255 (1970)Google Scholar
  74. 74.
    Royal College of General Practitioners: Oral contraceptives and health. London-New York: Pitman Medical 1974Google Scholar
  75. 75.
    Rumery, R. E.: Fetal mouse oviduct in organ and tissue culture. In: The mammalian oviduct (eds. E. S. E. Hafez, R. J. Blandau). Chicago: University of Chicago Press 1969Google Scholar
  76. 76.
    Sampson, J. A.: The lymphatics of the mucosa of the fimbriae of the Fallopian tube. Amer. J. Obstet. Gynec.33, 911–930 (1937)Google Scholar
  77. 77.
    Satir, P.: Studies on cilia. II. Examination of the distal region of the ciliary shaft and the role of the filaments in motility. J. Cell Biol.26, 805–834 (1965)Google Scholar
  78. 78.
    Satir, P.: Studies on cilia. III. Further studies on the cilium tip and a “sliding filament” model of ciliary motility. J. Cell Biol.39, 77–94 (1968)Google Scholar
  79. 79.
    Schindler, A. E., Jaeger-Whitegiver, E. R., Friedrich, E., Keller, E., Göser, R.: Effect of different oral contraceptives on the female reproductive system. Acta endocr. (Kbh.), Suppl.199, 355 (1975)Google Scholar
  80. 80.
    Shaaban, M. M., Klopper, A.: Plasma oestradiol and progesterone concentration in the normal menstrual cycle. J. Obstet. Gynec. Brit. Com.80, 776–782 (1973)Google Scholar
  81. 81.
    Sleigh, M. A.: Biology of cilia and flagella. Pergamon 1962Google Scholar
  82. 82.
    Smith, M., Vessey, M. P., Bounds, W., Warren, J.: Progestogen-only oral contraception and ectopic gestation. Brit. med. J.4, 104–105 (1974)Google Scholar
  83. 83.
    Stange, H.-H.: Zur funktioneilen Morphologie des Fimbrienendes der menschlichen Tube und des Epoophoron. Arch. Gynäk.182, 77–103 (1952)Google Scholar
  84. 84.
    Strong, C. G., Bohr, D. F.: Effects of prostaglandins E1, E2, A1 and F1alpha on isolated, vascular, smooth muscle. Amer. J. Physiol.213, 725–733 (1967)Google Scholar
  85. 85.
    Summers, K.: ATP-induced sliding of microtubules in bull sperm flagella. J. Cell Biol.60, 321–324 (1974)Google Scholar
  86. 86.
    Summers, K., Gibbons, I. R.: Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc. nat. Acad. Sci. USA68, 3092–3096 (1971)Google Scholar
  87. 87.
    Taylor, R. W., Brush, M. G., King, R. J.: Intravenous and intraluminal administration of (6,7-3H) oestradiol in in-vivo uptake studies with human Fallopian tube. J. Endocr.43, lxii (1969)Google Scholar
  88. 88.
    Van Kordelaar, J. M. G., Broekman, M. M. M., van Rossum, J. M.: Interaction of contraceptive progestins and related compounds with the oestrogen receptor. I. Effect on (3H) oestradiol distribution pattern in the ovariectomized rat. Acta endocr. (Kbh.)78, 145–164 (1975)Google Scholar
  89. 89.
    Van Kordelaar, J. M. G., Vermoken, A. J. M., de Veerd, C. J. M., van Rossum, J. M.: Interaction of contraceptive progestins and related compounds with oestrogen receptor. II. Effect on (3H) oestradiol binding to the rat uterine receptor in vitro. Acta endocr. (Kbh.)78, 165–179 (1975)Google Scholar
  90. 90.
    Wachstein, M., Meisel, E.: Histochemistry of hepatic phosphatases at a physiological pH. With special reference to the demonstration of bile canaliculi. Amer. J. clin. Path.27, 13–23 (1957)Google Scholar
  91. 91.
    Warner, F. D.: Crossbridge mechanisms in ciliary motility. In: Abstracts of papers presented at the meeting on “Cell motility”. Cold Spring Harbour, New York 1975Google Scholar
  92. 92.
    Wiese, J.: Ovarian function during treatment with Lynestrenol 0,5 mg daily. Acta endocr. (Kbh.)78, 325–331 (1975)Google Scholar
  93. 93.
    Wille, K.-H., Schnorr, B.: Histochemische und elektronenmikroskopische Untersuchungen über ATPasen des endometrialen Oberflächen- und Drüsenepithels der Ziege (Capra hircus). Z. Zellforsch.110, 284–300 (1970)Google Scholar
  94. 94.
    Woodruff, J. D., Pauerstein, C. J.: The Fallopian tube. Baltimore: Williams and Wilkins 1969Google Scholar
  95. 95.
    Zander, J., Forbes, T. R., Münstermann, A. M. von, Neher, R.: Δ4-3-Ketopregnene-20α-ol and Δ4-3-Ketopregnene-20β-ol, two naturally occuring metabolites of progesterone. Isolation, identification, biologic activity and concentration in human tissue. J. clin. Endocr.18, 337–353 (1958)Google Scholar

Copyright information

© J. F. Bergmann-Verlag 1976

Authors and Affiliations

  • P. Kugler
    • 1
  • K. -H. Wrobel
    • 1
  • H. J. Wallner
  • U. Heinzmann
    • 2
  1. 1.Institut für Anatomie der Universität RegensburgRegensburg
  2. 2.Abteilung für Nuklearbiologie im Institut für Biologie der Gesellschaft für Strahlen- und Umweltforschung mbHNeuherberg/München

Personalised recommendations