Advertisement

Oxidation of Metals

, Volume 29, Issue 5–6, pp 371–389 | Cite as

Oxidation study of Fe-8Cr-10Ni-(0-3)Si-(0-6)Mo alloys

  • James C. Rawers
Article

Abstract

Mechanisms are proposed to explain the oxidation rate behavior of Fe-8Cr-10Ni alloys to which varying amounts of either Si (0–3%) or Mo (0–6%), or both have been added. The formation and breakdown of a silica sublayer cause significant changes in the oxidation mechanism. The formation of the silica depends on preformation of a Cr2O3 outer layer. The addition of Mo enhances the oxidation protection of Fe-Si alloys by producing an Fe-Mo-Si precipitate in the base metal.

Key words

Oxidation silicides mechanism rates actuation energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Baer,Appl. Surface Sci. 7, 69 (1981).Google Scholar
  2. 2.
    H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster,Oxid. Met. 19, 13 (1983).Google Scholar
  3. 3.
    J. M. Francis and J. A. Juston,Mater. Sci. Eng. 4, 84 (1969).Google Scholar
  4. 4.
    H. Fujikawa, J. Murayama, N. Fujino, T. Moroishi, and Y. Shoji,J. Iron Steel Inst. Jpn. 67, 159 (1981).Google Scholar
  5. 5.
    H. Fujikawa, J. Murayama, N. Fujino, and T. Moroishi,J. Iron Steel Inst. Jpn. 67, 169 (1981).Google Scholar
  6. 6.
    K. Saito, S. Akiyama, M. Kisaichi, Y. Takahashi, and K. Ogawa,Nippon Stainless Tech. Rep. 16, 1 (1981).Google Scholar
  7. 7.
    P. T. Moseley, G. Tappin, and J. C. Riviere,High Temp. High Pressure 14, 559 (1982).Google Scholar
  8. 8.
    S. Floreen,Metall. Trans. 13A, 2003 (1982).Google Scholar
  9. 9.
    G. C. Wood, J. A. Richardson, M. G. Hobby, and J. Boustead,Corros. Sci. 9, 659 (1969).Google Scholar
  10. 10.
    A. Kumar and D. L. Douglass,Oxid. Met. 10, 1 (1976).Google Scholar
  11. 11.
    J. C. Rawers,J. Mater. Sci. Lett. 5, 513 (1986).Google Scholar
  12. 12.
    R. G. Miner and V. Nagarajan,Oxid. Met. 16, 295 (1981).Google Scholar
  13. 13.
    I. Svedung, B. Hammer, and N. G. Vannarberg,Oxid. Met. 6, 61 (1973).Google Scholar
  14. 14.
    R. L. Tallman and E. A. Gulbransen,J. Electrochem. Soc. Solid State Sci. 115, 770 (1968).Google Scholar
  15. 15.
    D. A. Voss, E. P. Butler, and T. E. Mitchell,Metall. Trans. 13A, 929 (1982).Google Scholar
  16. 16.
    A. Abba, A. Galerie, and M. Caillet,Mater. Chem. 5, 147 (1980).Google Scholar
  17. 17.
    G. V. Raynor and V. G. Rivilin,Int. Met. Rev. 30, 68 (1985).Google Scholar
  18. 18.
    A. Atkinson and J. W. Gardner,Corr. Sci. 21, 49 (1981).Google Scholar
  19. 19.
    F. H. Wohlbier and D. J. Fisher eds.,Solid State Data Service Diffusion and Defect Data Series, Trans. Tech. Publ., Rockport, Mass.Google Scholar
  20. 20.
    M. R. Taylor, J. M. Calvert, D. G. Lees, and D. B. Meadowcraft,Oxid. Met. 14, 499 (1980).Google Scholar
  21. 21.
    A. Atkinson and J. W. Gardner,Corros. Sci. 21, 49 (1981).Google Scholar
  22. 22.
    A. Atkinson,Corros. Sci. 22, 87 (1982).Google Scholar
  23. 23.
    T. Ban, K. Bohnenkamp, and H. I. Engell,Corros. Sci. 19, 283 (1979).Google Scholar
  24. 24.
    R. C. Logani and W. W. Smeltzer,Oxide. Met. 3, 15 (1971).Google Scholar
  25. 25.
    R. Rolls and R. Shahhosseini,Oxid. Met. 18, 115 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • James C. Rawers
    • 1
    • 2
  1. 1.United States Department of the InteriorAlbany Research Center, Bureau of MinesAlbany
  2. 2.Department of Mechanical EngineeringOregon State UniversityCorvallis

Personalised recommendations