Oxidation of Metals

, Volume 28, Issue 5–6, pp 353–389 | Cite as

Evolution of grain structure in nickel oxide scales

  • H. V. Atkinson


In systems such as the oxidation of nickel, in which grain-boundary diffusion in the oxide can control the rate of oxidation, understanding of the factors governing the grain structure is of importance. High-purity mechanically polished polycrystalline nickel was oxidized at 700°C, 800°C, and 1000°C for times up to 20 hr in 1 atm O2. The scale microstructures were examined by parallel and transverse cross section transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Texture coefficients were found by X-ray diffraction (XRD). Each grain in the transverse section grain boundary networks was systematically analyzed for width parallel to the Ni-NiO interface and perpendicular length, for boundary radius of curvature and for number of sides. The variation of these parameters with depth in the scale was examined. In particular, grains were increasingly columnar (i.e., with ratio of grain length to width >1) at higher temperatures and longer times. Columnar grain boundaries tended to be fairly static; the columnar grain width was less than the rate controlling grain size predicted from the oxidation rate. The mean boundary curvature per grain provided a guide to the tendency for grain growth, except in the region of the Ni-NiO interface, where the boundaries were thought to be pinned.

Key words

Grain growth nickel oxide high temperature oxidation nickel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Atkinson,Rev. Mod. Phys. 57, 437 (1985).Google Scholar
  2. 2.
    A. Atkinson and R. I. Taylor,Philos. Mag. A43, 979 (1981).Google Scholar
  3. 3.
    A. Atkinson, R. I. Taylor and A. E. Hughes,Philos. Mag. A45, 823 (1982).Google Scholar
  4. 4.
    M. T. Tinker, Ph.D. thesis, Case Western Reserve University (1984).Google Scholar
  5. 5.
    L. W. Hobbs, H. T. Sawhill,Radiat. Effects 74, 291 (1983).Google Scholar
  6. 6.
    H. T. Sawhill and L. W. Hobbs,9th International Congress on Metallic Corrosion, Toronto, June 1–6 (1984).Google Scholar
  7. 7.
    R. D. Doherty,Met. Trans. 6A, 588 (1975).Google Scholar
  8. 8.
    F. N. Rhines and K. R. Craig,Met. Trans. 5, 413 (1974).Google Scholar
  9. 9.
    H. V. Atkinson and A. T. Chadwick, Harwell Report AERE-M3578 (1987).Google Scholar
  10. 10.
    H. V. Atkinson, Ph.D. thesis, Imperial College of Science and Technology (1986).Google Scholar
  11. 11.
    H. V. Atkinson, J. Cook, T. Halford, and A. Rabinovitch, Harwell Report AERE-M3577 (1987).Google Scholar
  12. 12.
    W. W. Mullins,Acta Met. 6, 414 (1958).Google Scholar
  13. 13.
    F. N. Rhines and R. G. Cohnell,J. Electrochem. Soc. 124, 1122 (1977).Google Scholar
  14. 14.
    H. V. Atkinson and D. M. DuffyActa Met. 34, 2371 (1986).Google Scholar
  15. 15.
    K. P. Kofstad and P. Lillerud,J. Electrochem. Soc. 127, 2397 (1980).Google Scholar
  16. 16.
    U. M. Martius,Can. J. Phys. 33, 466 (1955).Google Scholar
  17. 17.
    D. F. Mitchell, P. B. Sewell, and M. Cohen,Surface Sci. 69, 310 (1977).Google Scholar
  18. 18.
    P. H. Hollaway and Hudson, J. B.,Surface Sci. 43, 123 (1974).Google Scholar
  19. 19.
    V. E. Henrich,Rep. Prog. Phys. 48, 1481 (1985).Google Scholar
  20. 20.
    M. Jiménez-Melendo, A. Dominguez-Rodriguez, J. Castaing, and R. Marquez,Scripta Met. 20, 739 (1986).Google Scholar
  21. 21.
    P. Kofstad,Oxid. Met. 24, 265 (1985).Google Scholar
  22. 22.
    K. M. Ostyn and C. B. Carter,Surface Sci. 121, 360 (1982).Google Scholar
  23. 23.
    C. Dubois, C. Monty, and J. Philibert,Solid State Ionics 12 75 (1984).Google Scholar
  24. 24.
    C. V. Thompson,J. Appl. Phys. 58, 763 (1985).Google Scholar
  25. 25.
    A. Atkinson,J. Phys. Coll. C4 (Suppl.)46, C4–379 (1985).Google Scholar
  26. 26.
    Y. J. Iida,J. Am. Ceram. Soc. 41, 397 (1958).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • H. V. Atkinson
    • 1
  1. 1.Department of Metals and Materials EngineeringSheffield City PolytechnicSheffieldEngland

Personalised recommendations