Oxidation of Metals

, Volume 28, Issue 5–6, pp 237–258 | Cite as

Kinetics of oxidation of ferrous alloys by super-heated steam

  • Nicholas J. Cory
  • Thelma M. Herrington
Article

Abstract

The kinetics of the oxidation of ferrous alloys in steam (10–60 kPa) at 450–550°C have been studied by measuring both the rate of hydrogen emission and the amount of metal oxidized. Excellent agreement has been found between the amount of metal oxidized calculated from both the total mass of hydrogen produced in the reaction and the thickness of the oxide layer formed; rate constants calculated from the rate of hydrogen emission, the mass of hydrogen produced as the reaction proceeds, and the oxide formed agree within experimental error. The rate of oxidation of a 9%Cr-1%Mo alloy at 501°C was found to be independent of the partial pressure of the steam. For this alloy, the activation energy agreed with literature values obtained at higher temperatures and pressures. The effect of the chromium and silicon content on the oxidation rates is compared. The rate constants are compared with theoretical calculations, assuming that the rate is determined by diffusion of iron in the magnetite lattice. For the 9%Cr-1%Mo alloy, the parabolic rate constant and activation energy are in excellent agreement with values calculated using Wagner's theory. The experimental rate constants are greater for the alloys containing smaller amounts of chromium; diffusion of iron along magnetite grain boundaries may be the dominant mechanism.

Key words

Steel oxidation duplex scale steam activation energy kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Mayer and A. V. Manolescu, inHigh Temperature Corrosion, R. A. Rapp, ed. (NACE, Houston, 1983).Google Scholar
  2. 2.
    J. C. Griess, J. M. Devan, and W. A. Maxwell,Mater. Perform. 17, 9 (1978).Google Scholar
  3. 3.
    R. T. Pascoe,Corrosion of Ferritic Boiler Steels in Steam, Central Electricity Research Laboratories Report No. RD/L/N 146/72.Google Scholar
  4. 4.
    M. I. Manning,Corrosion of 9 Cr Mo in Steam, Central Electricity Research Laboratories Report No. RD/L/N 125/77.Google Scholar
  5. 5.
    R. A. Rapp,Metall. Trans. 15A, 765 (1984).Google Scholar
  6. 6.
    A. M. Grishin, V. G. Perkov, V. P. Sentyurev, and Ya. Y. Yaschchenko,Thermal Eng. 16, 121 (1969).Google Scholar
  7. 7.
    F. Eberle and J. M. Kitterman,Behaviour of Superheater Alloys in High Temperature, High Pressure Steam, G. E. Lien, ed. (American Society of Mechanical Engineers, New York, 1968).Google Scholar
  8. 8.
    N. J. Cory, Ph.D. thesis, Reading University, Reading, U.K., 1986.Google Scholar
  9. 9.
    R. A. Davies, J. L. Drummond, and D. W. Adaway,Nucl. Eng. Int. 16, 493 (1971).Google Scholar
  10. 10.
    P. Hurst and H. C. Cowen,Proceedings of Conference on Ferritic Steels for Fast Reactor Steam Generators (British Nuclear Energy Society, London, 1977).Google Scholar
  11. 11.
    T. A. McNary,The Exfoliation of Steam Side Scale in Reheater Tubing of Croloys 2 1/4, 5and 9, Babcock and Wilcox Co., Report No. 7724, (American Society of Mechanical Engineers Workshop, Atlanta City, New Jersey, 1971).Google Scholar
  12. 12.
    N. L. Petersen, W. K. Chen, and D. J. Wolf,J. Phys. Chem. Solids 41, 709 (1980).Google Scholar
  13. 13.
    A. Atkinson and R. I. Taylor,J. Mater. Sci. 18, 2371 (1983).Google Scholar
  14. 14.
    R. L. Tallman and E. A. Gulbransen,J. Electrochem. Soc. 115, 898 (1968).Google Scholar
  15. 15.
    D. A. Voss, E. P. Butler, and T. E. Mitchell,Metall. Trans. 13A, 929 (1982).Google Scholar
  16. 16.
    A. Atkinson,Rev. Mod. Phys. 57, 437 (1985).Google Scholar
  17. 17.
    P. T. Moseley, G. Tappin, and J. C. Rivière,Corros. Sci. 22, 69 (1982).Google Scholar
  18. 18.
    A. Atkinson and R. I. Taylor,High Temp. High Pressures 14, 571 (1982).Google Scholar
  19. 19.
    P. L. Surman,Corros. Sci. 13, 113 (1973).Google Scholar
  20. 20.
    P. H. Effertz and H. Meisel,Machinenschaden 55, 14 (1971).Google Scholar
  21. 21.
    E. C. Potter and G. M. W. Mann,Br. Corros. J. 1, 26 (1965).Google Scholar
  22. 22.
    T. Ericsson,Oxid. Met. 2, 173 (1970).Google Scholar
  23. 23.
    I. E. Klein, J. Sharon, and A. E. Yaniv,Scripta Metall. 15, 141 (1981).Google Scholar
  24. 24.
    P. L. Surman and J. E. Castle,Corros. Sci 9, 771 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Nicholas J. Cory
    • 1
  • Thelma M. Herrington
    • 1
  1. 1.Department of ChemistryUniversity of ReadingReadingEngland

Personalised recommendations