Oxidation of Metals

, Volume 30, Issue 3–4, pp 141–183 | Cite as

Improvement of the oxidation resistance of superalloys by low-pressure, plasma-sprayed MCrAlYTa coatings. I

  • A. M. Huntz
  • A. Boumaza
  • G. Moulin


The oxidation behavior of two superalloys (CMSX2 and IN100) protected by low-plasma-pressure-sprayed MCrAlYTa coatings (M = Co, Ni) was studied with emphasis on the kinetics and microstructural aspects. The oxidation behavior of each alloy (substrate and coating) was studied separately in order to obtain a better understanding of the oxidation mechanism of duplex systems (coated substrate) under both isothermal and cyclic conditions (mainly at 1100°C and in 1 atm O2). Although all these systems develop an alumina scale, differences were observed as a result of several factors: (1) the coating and substrate composition, thus the presence, amount and distribution of addition elements (Y, Ta, Ti, C,...); (2) the interdiffusion phenomena that induce microstructural modifications; and (3) the porosity amount and roughness of the coating. The system that appears to be the most resistant against cyclic oxidation consists of CoNiCrAlYTa-coated IN100. This cannot be explained by the present study. Further work was conducted, particularly on the oxidation stresses, as described and discussed in paper II.

Key words

plasma-sprayed coated superalloys high-temperature oxidation resistance addition-element influence interdiffusion phenomena kinetics and microstructure Ni-Co base alloys 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Adda, J. M. Dupouy, J. Philibert, and Y. Quéré,Eléments de métallurgie physique, Vol. 6:Corrosion, oxydation, alliages pour haute température (Documentation Française, INSTN, CEN Saclay, Gif Sur Yvette, 1982).Google Scholar
  2. 2.
    J. M. Veys and R. Mévrel, inProceedings of the International Symposium on High Temperature Corrosion, Marseille, July 7–11, 1986, Mat. Sci. Eng. 88, 253 (1987).Google Scholar
  3. 3.
    R. Pichoir,Recherche Aérospatiale 5, 277 (1974).Google Scholar
  4. 4.
    D. Manesse, Ch. Lopvet, and P. Mazars,HEURCHROME,2, August 30, 1985.Google Scholar
  5. 5.
    D. Blavette and A. Bostel,Acta. Met. 32, 811 (1984).Google Scholar
  6. 6.
    J. Chène, C. L. Baker, I. M. Bernstein, and J. C. Williams,Metall. Trans. A. 19A, 73 (1988).Google Scholar
  7. 7.
    A. Hazotte and A. Simon,Colloque National de Superalliages Monocristallins. Physico-Chimie et Propriétés Mécaniques à Haute Température, Villars de Lans, Feb. 26–28, 1986.Google Scholar
  8. 8.
    S. Shankar, D. E. Koenig, and L. E. Dardi,J. Metals 13 (1981).Google Scholar
  9. 9.
    A. Kumar, M. Nasrallah, and D. L. Douglass,Oxid. Met. 8, 227 (1974).Google Scholar
  10. 10.
    M. Frances, P. Steinmetz, J. Steinmetz, C. Duret, and R. Mévrel,Congrès ICMC, Los Angeles, April 15–19, 1985, Rapport ONERA TP 1985-34.Google Scholar
  11. 11.
    F. Tourenne, Thesis, University of Limoges, France (1984).Google Scholar
  12. 12.
    A. M. Huntz, J. L. Lebrun, and A. Boumaza,Oxid. Met. to be published.Google Scholar
  13. 13.
    A. Boumaza, Thesis, University Paris-Sud, Orsay, France (1987).Google Scholar
  14. 14.
    V. I. Nefedov, D. Gati, B. F. Dzhurinski, N. P. Sergueshin, and Ya. U. Salyn,Russian J. of Inorg. Chem. 20, 9, 1279 (1975).Google Scholar
  15. 15.
    P. Mazars,Métaux-Corrosion-Industrie,686, 321 (1982).Google Scholar
  16. 16.
    R. Mévrel,High Temperature Corrosion of Superalloys, London, 11–12 February, 1986, Rapport ONERA TP 1986-9 and Mat. Sci. and Technology 3,7, 531 (1987).Google Scholar
  17. 17.
    D. P. Whittle and J. Stringer,Phil. Trans. R. Soc. London, Ser. A,285, 309 (1980).Google Scholar
  18. 18.
    F. H. Stott and G. C. Wood,Proceedings of the International Symposium on High Temperature Corrosion, Marseille, July 7–11, 1986, Mat. Sci. Eng. 87, 267 (1987).Google Scholar
  19. 19.
    A. M. Huntz,Proceedings of the International Symposium on High Temperature Corrosion, Marseille, July 7–11, 1986, Mat. Sci Eng.,87, 251 (1987).Google Scholar
  20. 20.
    K. L. Luthra and E. L. Hall,Oxid. Met.,26, 516, 385 (1986).Google Scholar
  21. 21.
    A. R. Nicoll and G. Wahl inSuperalloys 1984, M. Gell, C. S. Kortovich, R. H. Bricknell, W. B. Kent and J. F. Radavich, eds. (Met. Soc. of AIME, New York, 1984) pp. 805–814.Google Scholar
  22. 22.
    G. Ben Abderrazik, G. Moulin, A. M. Huntz, and R. Berneron,J. Mat. Sci. 19, 3173 (1984).Google Scholar
  23. 23.
    P. Choquet, C. Indrigo, and R. Mévrel,Proceedings of the International Symposium on High Temperature Corrosion, Marseille, 7–11 July, 1986, Mat. Sci. Eng.,88, 97 (1987).Google Scholar
  24. 24.
    S. R. Levine,Diffusion, Nickel Alloys, Cobalt Alloys, Protective Coatings: Gas Turbine (NASA Report T.N.D.-8383-Washington, D.C., February 1977).Google Scholar
  25. 25.
    P. Mazars, D. Manesse, and Ch. Lopvet,Proceedings of the Conference on High Temperature Alloys for Gas Turbines Oct. 6–9, 1986, Liège, Belgium.Google Scholar
  26. 26.
    J. C. Pivin, D. Delaunay, C. Roques-Carmes, A. M. Huntz, and P. Lacombe,Corr. Sci. 20, 351 (1980).Google Scholar
  27. 27.
    J. D. Kuenzly and D. L. Douglass,Oxid. Met. 8, 139 (1974).Google Scholar
  28. 28.
    B. Pieraggi and F. Dabosi,Werkstoffe und Korrosion,38, 575 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • A. M. Huntz
    • 1
  • A. Boumaza
    • 1
  • G. Moulin
    • 1
  1. 1.Laboratoire de Métallurgie Structurale, ISMA, CNRS UA 1107Université Paris-SudOrsayFrance

Personalised recommendations