Advertisement

Oxidation of Metals

, Volume 35, Issue 1–2, pp 107–137 | Cite as

On the oxidation of iron in CO2+CO mixtures: II. Reaction mechanisms during initial oxidation

  • Rune Bredesen
  • Per Kofstad
Article

Abstract

Oxidation of high purity iron in CO2 and CO2 + COmixtures at different total pressures (0.1–1 atm.) has been studied at 1000–1200°C. While paper I of this study emphasized studies of the relation between scale morphology and reaction kinetics, this paper focuses on the reaction mechanism during the initial oxidation involving growth of wüstite films and scales. The reaction behavior is analyzed in terms of coupled kinetics comprising a surface reaction and diffusional transport through the scale. A classical model derived by C. Wagner, based on the assumption that the properties and defect concentrations in the scale surface are exactly the same as in bulk wüstite equilibrated in CO2 +CO mixtures, does not provide a satisfactory description of the reaction kinetics and the gas-pressure dependence of the surface reaction. As an alternative model, it is suggested that the gasous molecules/species interacts with the surface to form surface complexes, and that surface complexes withCO2serve as preferred reaction sites for the surface reaction.

Key words

iron oxidation in CO2+CO mixtures kinetics reaction mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Hauffe and H. Pfeiffer,Z. Metallk. 44, 27 (1953).Google Scholar
  2. 2.
    N. G. Schmahl, H. Baumann, and H. Schenck,Arch. Eisenhüttenwesen 29, 147 (1958).Google Scholar
  3. 3.
    W. W. Smeltzer,Trans Met. Soc. AIME 218, 674 (1960).Google Scholar
  4. 4.
    W. W. Smeltzer,Acta Met. 8, 377 (1960).Google Scholar
  5. 5.
    F. S. Pettit, R. Yinger, and J. B. Wagner, Jr.,Acta Met. 8, 617 (1960).Google Scholar
  6. 6.
    F. S. Pettit and J. B. Wagner, Jr.,Acta Met. 12, 35 (1964).Google Scholar
  7. 7.
    K. Hedden and G. Lehmann,Arch. Eisenhüttenwesen 35, 839 (1964).Google Scholar
  8. 8.
    L. A. Morris and W. W. Smeltzer,Acta Met. 15, 1591 (1967).Google Scholar
  9. 9.
    E. T. Turkdogan and J. V. Vinters,Met. Trans. 3, 1561 (1972).Google Scholar
  10. 10.
    S. M. El Raghy, F. Jeannot, and C. Gleitzer,J. Mater. Sci. Lett. 13, 2510 (1978).Google Scholar
  11. 11.
    R. Bredesen and P. Kofstad,Proceedings of the Third Round Table Meeting on Physico-Chemical and Structural Properties and Kinetics of Reduction of Wüstite and Magnetite (Jadwisin, Poland, inMetalurgia I Odlewnictwo), p. 225.Google Scholar
  12. 12.
    R. Bredesen and P. Kofstad,Oxid. Met. 34, 361 (1990).Google Scholar
  13. 13.
    R. Bredesen and P. Kofstad,Oxid. Met. 36 (in press).Google Scholar
  14. 14.
    L. Himmel, R. F. Mehl, and C. E. Birchenall,Trans AIME 197, 827 (1953).Google Scholar
  15. 15.
    P. Hembree and J. B. Wagner, Jr.,Trans AIME 245, 1547 (1969).Google Scholar
  16. 16.
    W. K. Chen and N. L. Peterson,J. Phys. Chem. Solids 36, 1097 (1975).Google Scholar
  17. 17.
    S. Yamaguchi and M. Someno,Trans. Jpn. Inst. Met. 23, 259 (1982).Google Scholar
  18. 18.
    P. Kofstad, inHigh Temperature Corrosion (Elsevier, New York, 1988) p. 68.Google Scholar
  19. 19.
    P. Desmarescaux, J. P. Bocquet, and P. Lacombe,Bull. Soc. Chim. Fr. 15, 1106 (1965).Google Scholar
  20. 20.
    R. L. Levin and J. B. Wagner, Jr.,Trans. Met. Soc. AIME 233, 159 (1965).Google Scholar
  21. 21.
    P. F. J. Landler and K. L. Komareck,Trans. Met. Soc. AIME 197, 827 (1966).Google Scholar
  22. 22.
    L. W. Laub and J. B. Wagner, Jr.,Oxid. Met. 7, 1 (1973);15A, 2241 (1984).Google Scholar
  23. 23.
    H. Rickert and W. Weppner,Z. Naturforsch. 29a, 1849 (1974).Google Scholar
  24. 24.
    F. Millot and J. Berthon,J. Phys. Chem. Solids 47, 1 (1986).Google Scholar
  25. 25.
    A. Sadowski, G. Petot-Ervas, C. Petot, and J. Janowski,Proceedings of the Third Round Table Meeting on Physico-Chemical and Structural Properties and Kinetics of Reduction of Wüstite and Magnetite, (Jadwisin, Poland, inMetalurgia I Odlewnitwo) p. 259.Google Scholar
  26. 26.
    C. R. A. Catlow, W. C. Mackrodt, M. J. Norgett, and A. M. Stoneham,Phil. Mag. A,40, 161 (1979).Google Scholar
  27. 27.
    P. E. Childs, L. W. Laub, and J. B. Wagner, Jr.,Proc. Brit. Ceram. Soc. 19, 29 (1975).Google Scholar
  28. 28.
    H. J. Grabke and H. Viefhaus,Ber. Bunsenges. Phys. Chem. 84, 152 (1980).Google Scholar
  29. 29.
    H. J. Grabke and H. Viefhaus,Mater. Sci. Monographs (React. Solids) 10, 410 (1982).Google Scholar
  30. 30.
    F. S. Pettit and J. B. Wagner, Jr.,Acta Met. 12, 35 (1964).Google Scholar
  31. 31.
    L. A. Morris and W. W. Smeltzer,Acta Met. 15, 1591 (1967).Google Scholar
  32. 32.
    H. J. Grabke and H. Viefhaus,Mater. Sci. Monographs (React. Solids) 10, 410 (1982).Google Scholar
  33. 33.
    H. J. Grabke,Ber. Bunsenges. Phys. Chem. 69, 48 (1965).Google Scholar
  34. 34.
    R. A. Giddings and R. S. Gordon,J. Am. Ceram. Soc. 56, 111 (1973).Google Scholar
  35. 35.
    B. Touzelin,Proceedings of the Third Round Table Meeting on Physico-Chemical and Structural Properties and Kinetics of Reduction of Wüstite and Magnetite (Jadwisin, Poland, inMetalurgia I Odlewnictwo), p. 107.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Rune Bredesen
    • 1
  • Per Kofstad
    • 1
  1. 1.Department of ChemistryUniversity of OsloOslo 3Norway

Personalised recommendations