Foundations of Physics Letters

, Volume 3, Issue 1, pp 1–35 | Cite as

Comparison between local Kolmogorovian models and Bell's inequality

  • A. Garuccio
  • D. Gutkowski
Article
  • 15 Downloads

Abstract

The conditions on the relative frequencies of coincidence between the measurements on two physical systems are deduced, in the particular case of four different directions, from Kolmogorovian probability and the Gutkowski and Valdes-Franco computational method. These conditions are compared with those imposed by Bell's inequality. It is proved that Bell's inequality is a necessary but not a sufficient condition for local Kolmogorovian probability. The further assumptions to be added to Bell's inequality, in order to prove the equivalence with local Kolmogorovian probability, are studied. The connection with the results obtained by other authors on the subject is discussed.

Key words

locality Kolmogorovian probability Bell's inequality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Gutkowski and M. V. Valdes-Franco, inQuantum Probability and Applications to the Quantum Theory of the Irreversible Processes (Springer Lectures Notes in Mathematics), L. Accardi, A. Frigerio, and V. Gorini, eds. (Springer, New York, 1984), p. 146.Google Scholar
  2. 2.
    L. Accardi, inQuantum Probability and Applications to the Quantum Thoery of the Irreversible Processes (Springer Lectures Notes in Mathematics No. 1055), L. Accardi,et al., eds. (Springer, New York, 1984), p. 1.Google Scholar
  3. 3.
    J. S. Bell,Physics 1, 195 (1965); J. F. Clauser, M. A. Horne, A. Shimony and R. A. Holt,Phys. Rev. Lett. 23, 880 (1969); F. Selleri,Lett. Nuovo Cimento 3, 581 (1972).Google Scholar
  4. 4.
    S. J. Freedman and J. F. Clauser,Phys. Rev. Lett. 28, 938 (1972); R. A. Holt and F. M. Pipkin, Harvard University preprint (1974); E. S. Fry and R. C. Thompson,Phys. Rev. Lett. 37, 465 (1976); J. F. Clauser,Phys. Rev. Lett. 36, 1223 (1976); A. Aspect, P. Grangier, and G. Roger,Phys. Rev. Lett. 47, 460 (1981); A. Aspect, P. Grangier, and G. Roger,Phys. Rev. Lett. 49, 91 (1982); A. Aspect, J. Dalibard, and G. Roger,Phys. Rev. Lett. 49, 1804 (1982); F. Falciglia, A. Garuccio, and L. Pappalardo,Lett. Nuovo Cimento 34, 1 (1982).Google Scholar
  5. 5.
    D. Gutkowski, G. Masotto, and M. V. Valdes-Franco,Nuovo Cimento 50B, 323 (1979).Google Scholar
  6. 6.
    P. McMullen and G. C. Shepard,Convex Polytopes and the Upper Bound Conjecture (Cambridge University Press, London, 1971), p. 3.Google Scholar
  7. 7.
    P. McMullen and G. C. Shepard,op. cit., p. 39.Google Scholar
  8. 8.
    P. McMullen and G. C. Shepard,op. cit., p. 43.Google Scholar
  9. 9.
    P. McMullen and G. C. Shepard,op. cit., p. 10.Google Scholar
  10. 10.
    A. Garuccio and F. Selleri,Nuovo Cimento 36B, 176 (1976).Google Scholar
  11. 11.
    P. McMullen and G. C. Shepard,op. cit., p. 41-42.Google Scholar
  12. 12.
    P. McMullen and G. C. Shepard,op. cit., p. 57.Google Scholar
  13. 13.
    P. McMullen and G. C. Shepard,op. cit., p. 80.Google Scholar
  14. 14.
    P. McMullen and G. C. Shepard,op. cit., p. 2.Google Scholar
  15. 15.
    P. McMullen and G. C. Shepard,op. cit., p. 8.Google Scholar
  16. 16.
    A. Fine,Phys. Rev. Lett. 48, 291 (1982).Google Scholar
  17. 17.
    A. Garg and N. D.Mermin,Found. Phys. 14, 1 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. Garuccio
    • 1
  • D. Gutkowski
    • 2
  1. 1.I. N. F. N. - Sezione di BariDipartimento di Fisica dell'UniversitáBariItaly
  2. 2.Dipartimento di FisicaIstituto di Meccanica Agraria dell'UniversitáCataniaItaly

Personalised recommendations