Skip to main content
Log in

Physical solutions and Mathematical properties of the Lorentz-Dirac equation

  • Published:
Foundations of Physics Letters

Abstract

The rectilinear motion of a charge obeying the Lorentz-Dirac equation and moving in an external electrostatic field is analyzed. Imposing no additional constraints, it is shown that the asymptotic motion of this charge is inertial. Energy conservation by the entire process is proved. Mathematical arguments concerning the irrelevance of runaway solutions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Rohrlich,Classical Charged Particles (Addison-Wesley, Reading, 1965), pp. 11–25.

    Google Scholar 

  2. N. P. Klepikov,Sov. Phys. Usp. 28, 506 (1985);Usp. Fiz. Nauk 146, 317 (1985).

    Google Scholar 

  3. P. A. M. Dirac,Proc. Roy. Soc. Lond. A 167, 148 (1938).

    Google Scholar 

  4. J. A. Wheeler and R. P. Feynman,Rev. Mod. Phys. 17, 157 (1945).

    Google Scholar 

  5. C. Teitelboim,Phys. Rev. D 1, 1572 (1970).

    Google Scholar 

  6. A. O. Barut,Phys. Rev. D 10, 3335 (1974).

    Google Scholar 

  7. L. D. Landau and E. M. Lifshitz,The Classical Theory of Fields (Pergamon, Oxford, 1962), pp. 231–241.

    Google Scholar 

  8. L. Infeld and P. R. Wallace,Phys. Rev. 57, 797 (1940).

    Google Scholar 

  9. P. Pearle, inElectromagnetism, D. Teplitz, ed. (Plenum, New York, 1982), pp. 222–224.

    Google Scholar 

  10. C. Teitelboim, D. Villarroel, and Ch. G. van Weert,Riv. Nuovo Cimento 3, 1 (1980).

    Google Scholar 

  11. S. Parrott,Relativistic Electrodynamics and Differential Geometry (Springer, New York, 1987), p. 211.

    Google Scholar 

  12. J. D. Jackson,Classical Electrodynamics (Wiley, New York, 1975), pp. 136–138

    Google Scholar 

  13. W. Wasow,Asymptotic Expansions for Ordinary Differential Equations (Interscience, New York, 1965).

    Google Scholar 

  14. J. D. Murray,Asymptotic Analysis (Springer, New York, 1984).

    Google Scholar 

  15. P. M. Morse and H. Feshbach,Methods of Theoretical Physics (McGraw-Hill, New York, 1953), p. 434.

    Google Scholar 

  16. J. Huschilt and W. E. Baylis,Phys. Rev. D13, 3256 (1976).

    Google Scholar 

  17. J. L. Willems,Stability Theory of Dynamical Systems (Wiley, New York, 1970), pp. 125–127.

    Google Scholar 

  18. T. Sawada, T. Kawabata, and F. Uchiyama,Phys. Rev. D27, 454 (1983) and references therein.

    Google Scholar 

  19. A. Valentini,Phys. Rev. Lett. 61, 1903 (1988).

    Google Scholar 

  20. J. Huschilt and W. E. Baylis,Phys. Rev. D17, 985 (1978).

    Google Scholar 

  21. E. Comay,Phys. Lett. A123, 425 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comay, E. Physical solutions and Mathematical properties of the Lorentz-Dirac equation. Found Phys Lett 3, 221–238 (1990). https://doi.org/10.1007/BF00666013

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00666013

Key words

Navigation