Skip to main content
Log in

The defect structure of 2s Nb1+xS2 and the high-temperature sulfidation of niobium

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

An approximate model for the defect structure of the niobium sulfide 2s Nb1+xS2 is developed on the basis of experimental data concerning its deviation from stoichiometry as a function of sulfur pressure. The model involves the presence of doubly-charged metal interstitials and metal vacancies as well as of free electrons and electron holes. The possible effects of hydrogen dissolution on the concentration of the intrinsic defects in this compound are also evaluated for various hydrogen species with an effective charge different from zero, but no final conclusion concerning the existence of an actual doping effect of this compound is reached. The rate constant for the sulfidation of niobium at 950°C is calculated on the basis of this defect structure as a function of the sulfur pressure and is compared with the experimental results concerning the sulfidation of niobium in H2-H2S mixtures. It is concluded that both metal vacancies and metal interstitials contribute significantly to the growth of the sulfide 2s Nb1+xS2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Delmaire and H. Le Brusq,Compt. Rend. 275C, 889 (1972).

    Google Scholar 

  2. T. Tatsuki, M. Wakihara, and M. Taniguchi,J. Less Common Met. 68, 183 (1979).

    Google Scholar 

  3. D. Hodouin,Met. Trans. 6B, 223 (1975).

    Google Scholar 

  4. F. Jellinek, G. Brauer, and H. Muller,Nature 185, 376 (1960).

    Google Scholar 

  5. F. Jellinek,Arkiv. Kemi 20, 447 (1963).

    Google Scholar 

  6. F. Kadijk and F. Jellinek,J. Less Common Met. 19, 421 (1969).

    Google Scholar 

  7. C. N. R. Rao and K. P. R. Pisharody, inProgress in Solid State Chemistry, Vol. 10, J. O. McCaldin and G. Somorjai, eds. (Pergamon Press, New York, 1975), p. 207.

    Google Scholar 

  8. P. Kofstad,High Temperature Corrosion (Elsevier Applied Sci., London, 1988).

    Google Scholar 

  9. E. Garstein, T. O. Mason, and J. B. Cohen,Advances in Ceramics, The American Ceramic Soc., Vol. 23 (Westerville, Ohio, 1987), p. 699.

    Google Scholar 

  10. S. Mrowec and J. Janowski, inSelected Topics in High Temperature Chemistry, Vol. 9, O. Johannesen and A. G. Andersen, eds. (Elsevier, Amsterdam, 1989), p. 55.

    Google Scholar 

  11. A. Atkinson, inSelected Topics in High Temperature Chemistry, Vol. 9, O. Johannesen and A. G. Andersen, eds. (Elsevier, Amsterdam, 1989), p. 29.

    Google Scholar 

  12. C. Wagner, inProgress in Solid State Chemistry, Vol. 10, J. O. McCaldin and G. Somorjai, eds. (Pergamon Press, New York, 1975), p. 1.

    Google Scholar 

  13. R. Dieckmann,Zeit. Phys. Chem. N.F. 107, 189 (1977).

    Google Scholar 

  14. G. E. Murch,Atomic Diffusion Theory in Highly Defective Solids (Trans. Tech. SA, Aedermannsdorf, 1980).

    Google Scholar 

  15. F. A. Kroger and H. J. Vink, inSolid State Physics, Vol. 3, F. Seitz and D. Turnbull, eds. (Academic Press, New York, 1956).

    Google Scholar 

  16. B. S. Lee and R. A. Rapp,J. Electrochem. Soc. 131, 2998 (1984).

    Google Scholar 

  17. W. H. Cheung and D. J. Young,Oxid. Met. 36, 15 (1991).

    Google Scholar 

  18. W. Znamirowski, F. Gesmundo, S. Mrowec, M. Danielewski, K. Godlewski, and F. Viani,Oxid. Met. 35, 175 (1991).

    Google Scholar 

  19. F. Gesmundo, F. Viani, and S. Mrowec,Solid State Ionics,50, 139 (1992).

    Google Scholar 

  20. T. Norby and P. Kofstad,Solid State Ionics 20, 169 (1988).

    Google Scholar 

  21. T. Norby, inSelected Topics in High Temperature Chemistry, Vol. 9, O. Johannesen and A. G. Andersen, eds. (Elsevier, Amsterdam, 1989), p. 101.

    Google Scholar 

  22. F. A. Kroger,The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1964).

    Google Scholar 

  23. S. Kovalchenko,Izvest. Acad. Nauk. SSR Met. 5, 221 (1974).

    Google Scholar 

  24. M. Danielewski, Proc. Eurocorr. '87, Dechema, Frankfurt, 1987, p. 223.

  25. K. N. Strafford and J. R. Bird,J. Less Common Met. 68, 223 (1979).

    Google Scholar 

  26. K. N. Strafford and D. Jenkinson, inCorrosion Resistant Materials for Coal Conversion Systems, D. B. Meadowcroft and M. I. Manning, eds. (Applied Sci. Pub., London, 1983), p. 551.

    Google Scholar 

  27. K. N. Strafford, A. F. Hampton, and D. Jenkinson, inHigh Temperature Alloys-Their Exploitable Potential, J. B. Marriott, M. Merz, J. Nihoul, and J. Ward, eds. (Elsevier, London, 1988), p. 165.

    Google Scholar 

  28. F. Gesmundo, F. Viani, and K. Godlewski, Proc. 7th Asian-Pacific Corrosion Control Conference, Vol. I, International Academic Publishers, Beijing, 1991, p. 90.

    Google Scholar 

  29. F. Gesmundo, F. Viani, and D. J. Young,Oxid. Met. 38, 309 (1992).

    Google Scholar 

  30. F. Gesmundo and F. Viani,J. Phys. Chem. Solids 42, 777 (1981).

    Google Scholar 

  31. S. Mrowec and K. Przybylski,High Temp. Mater. Proc. 6, 1 (1984).

    Google Scholar 

  32. H. Rau,J. Phys. Chem. Solids 41, 765 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesmundo, F., Viani, F. & Niu, Y. The defect structure of 2s Nb1+xS2 and the high-temperature sulfidation of niobium. Oxid Met 38, 465–482 (1992). https://doi.org/10.1007/BF00665664

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665664

Key words

Navigation