Colloid and Polymer Science

, Volume 274, Issue 3, pp 239–244 | Cite as

Phase behaviour and physicochemical properties of microemulsions with a non-ionic surfactant (IGEPAL)

  • A. Fernández Nóvoa
  • J. Quibén
  • L. M. Liz-Marzán
Original Contribution


The non-ionic surfactant pentaethylenglycol-4-octylphenyl ether (igepal CA-520) represents a good industrial alternative to the long-tail members of the CiEj family. In this paper, the phase behaviour of the microemulsion system igepal CA-520/n-decane/brine is studied in detail. An isotropic phase was found, as well as liquid crystalline and cream-like structures, depending on composition and temperature. Such structures can either form single-phase homogeneous mixtures, or coexist with other structures when phase separation takes place. Below surfactant concentration of about 20%, more complicated phase equilibria develop as temperature changes. The presence of different additives shifts the temperature ranges where the different phases exist, while keeping the general shape of the phase diagram, which agrees with the general rules for non-ionic surfactants. Complementary rheology experiments reveal a change from non-Newtonian to Newtonian behaviour during the phase transition from a lamellar phase to the isotropic microemulsion. A structure of water droplets associated in clusters can be proposed from SANS and electrical conductivity.

Key words

Microemulsions non-ionic surfactants phase behaviour structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See for instance: Degiorgio V, Corti M (eds) (1985) Physcis of Amphiphiles: Micelles, Vesicles and Microemulsions, North Holland, Amsterdam; Prince LM (1977) Microemulsions, Academic Press, San Diego; Friberg SE (1992) Spec Publ R Soc Chem (Industrial Appl Surfactants III) 107:227Google Scholar
  2. 2.
    Gotarty WB (1976) J Pet Technol 28:93Google Scholar
  3. 3.
    Osborne DW, Ward AJI, O'Neill KJ (1988) Drug Develop Ind Pharm 14:1203Google Scholar
  4. 4.
    Bandow S, Kimura K, Kon-no K, Kitahara A (1987) Jap J Appl Phys 26 (5):713Google Scholar
  5. 5.
    López Quintela MA, Fernández Nóvoa A, Quibén J, Losada D, Ferreiro C (1988) Progr Colloid Polym Sci 76:165Google Scholar
  6. 6.
    López Quintela MA, Fernández Nóvoa A, Liz L (1991) Naturwissenschaften 78:229Google Scholar
  7. 7.
    Korneta W, López Quintela MA, Fernández Nóvoa A (1992) Physica A 185:116Google Scholar
  8. 8.
    López Quintela MA, Rivas J, Quibén J (1989) Spanish Patent no. 2009404; (1991) USA Patent no. 4983217Google Scholar
  9. 9.
    Liz L, López Quintela MA, Mira J, Rivas J (1994) J Mater Sci 29:3797Google Scholar
  10. 10.
    Kahlweit M, Strey R, Firman P, Haase D (1985) Langmuir 1:281Google Scholar
  11. 11.
    Kahlweit M, Strey R (1988) J Phys Chem 92:1557Google Scholar
  12. 12.
    Osseo-Asare K, Arriagada FJ (1990) Colloid Surf 50:321Google Scholar
  13. 13.
    Robinson RA, Stokes RH (1959) Electrolyte Solutions, Butterworth, LondonGoogle Scholar
  14. 14.
    De Gennes PG, Taupin C (1982) J Phys Chem 86:2294Google Scholar
  15. 15.
    Aronson MP (1988) Langmuir 5:494Google Scholar
  16. 16.
    Liz-Marzán L, Samseth J, López Quintela MA (1993) J Phys IV, C8, 3:165Google Scholar
  17. 17.
    Kahlweit M (1995) J Phys Chem 99:1281Google Scholar
  18. 18.
    Berg RF, Moldover MR, Huang JS (1987) J Chem Phys 87:3687Google Scholar
  19. 19.
    Kim MW, Huang JS (1986) Phys Rev A 34:719Google Scholar

Copyright information

© Steinkopff Verlag 1996

Authors and Affiliations

  • A. Fernández Nóvoa
    • 1
  • J. Quibén
    • 2
  • L. M. Liz-Marzán
    • 1
  1. 1.Department of Pure and Applied Chemistry (Physical Chemistry Section)University of Vigo E.U.I.T.I.VigoSpain
  2. 2.Department of Physical ChemistryUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations