Basic protein and ribonucleic acid in the cytoplasm of the ovarian oocyte in the golden hamster

  • Brenda S. Weakley


Cytochemical and autoradiographic studies indicate that granular-fibrillar cytoplasmic bodies and intermitochondrial substance in the hamster ovarian oocyte contain both basic protein and ribonucleic acid. The studies suggest that the granular-fibrillar bodies and intermitochondrial substance, although morphologically similar, are not functionally identical. It is proposed that the granular-fibrillar bodies represent stored inactive maternal messenger RNA synthesized during the lampbrush chromosome stage of oogenesis for use in the developing embryo. The function of the intermitochondrial substance is still obscure. The suggestion is put forward that it may represent the synthetic machinery for the manufacture of those mitochondrial proteins for which the mitochondrial DNA is insufficient to code.


Oocytes Cytoplasm Basic protein Ribonucleic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, E. C., Hertig, A. T.: Studies on guinea pig oocytes. I. Electron microscopic observations on the development of cytoplasmic organelles in oocytes of primordial and primary follicles. J. Cell Biol.21, 397–427 (1964).Google Scholar
  2. Aldrige, W. G.: Studies on histochemical ribonuclease digestions. J. Histochem. Cytochem.10, 682 (1962).Google Scholar
  3. Alfert, M., Das, N. K., Eastwood, J. M.: Effects of RNase on living cells and on cells fixed by different methods. J. Histochem. Cytochem.10, 681–682 (1962).Google Scholar
  4. —, Geschwind, I. I.: A selective staining method for the basic protein of cell nuclei. Proc. nat. Acad. Sci (Wash.)39, 991–999 (1953).Google Scholar
  5. Backstrom, S.: Basic proteins during sea urchin ovogenesis. Acta Embryol. Morph. exp. (Palermo)8, 178–182 (1965).Google Scholar
  6. Balinsky, B. I., Devis, R. J.: Origin and differentiation of cytoplasmic structures in the oocyte ofXenopus laevis. Acta Embryol. Morph. exp. (Palermo)6, 55–108 (1963).Google Scholar
  7. Blanchette, E. J.: A study of the fine structure of the rabbit primary oocyte. J. Ultrastruct. Res.5, 349–363 (1961).Google Scholar
  8. Brachet, J., Decroly, M., Ficq, A., Quertier, J.: Ribonucleic acid metabolism in unfertilized and fertilized sea urchin eggs. Biochim. biophys. Acta (Amst.)72, 660–662 (1963).Google Scholar
  9. Clerot, J.-C.: Mise en évidence par cytochimie ultrastructurale de l'émission de protéines par le noyau d'auxocytes de Batraciens. J. Microscopie7, 973–992 (1968).Google Scholar
  10. Cowden, R. R.: A cytochemical study of the growth of the slug oocyte. In: Chemical basis of development (W. D. McElroy and H. B. Glass, eds.) p. 404–414. Baltimore: Johns Hopkins University Press 1958.Google Scholar
  11. —: Further cytochemical investigations on the growth and development of slug oocytes. Growth26, 209–234 (1962).Google Scholar
  12. —: Cytochemical studies of oocyte growth in the lancelet,Branchiostoma carribaeum. Z. Zellforsch.60, 399–408 (1963).Google Scholar
  13. —: Cytochemical studies on cytoplasmic RNA-associated basic proteins in oocytes, somatic cells and ribosomes. Histochemie6, 226–242 (1966).Google Scholar
  14. Crippa, M., Davidson, E. H., Mirsky, A. E.: Persistence in early amphibian embryos of informational RNAs from the lampbrush stage of oogenesis. Proc. nat. Acad. Sci. (Wash.)57, 885–892 (1967).Google Scholar
  15. Davenport, R., Davenport, J. C.: A cytochemical study of cytoplasmic basic proteins in the ascidian oocyte. J. Cell Biol.25, 319–326 (1965a).Google Scholar
  16. — —: Cytoplasmic basic proteins in the oocytes of three species of molluscs. Exp. Cell Res.39, 74–80 (1965b).Google Scholar
  17. — —: A cytochemical study of cytoplasmic basic proteins in echinoderm oogenesis. Exp. Cell Res.42, 429–437 (1966).Google Scholar
  18. Davidson, E. H., Allfrey, V. H., Mirsky, A. E.: On the RNA synthesized during the lampbrush phase of amphibian oogenesis. Proc. nat. Acad. Sci. (Wash.)52, 501–508 (1964).Google Scholar
  19. —, Crippa, M., Kramer, F. R., Mirsky, A. E.: Genomic function during the lampbrush chromosome stage of amphibian oogenesis. Proc. nat. Acad. Sci. (Wash.)56, 856–863 (1966).Google Scholar
  20. Dhainaut, A.: Étude en microscopie électronique et par autoradiographie à haute resolution des extrusions nucléaires au cours de l'ovogénèse deNereis pelagica. (Annélide Polychète). J. Microscopie9, 99–118 (1970).Google Scholar
  21. Gansen, P. van, Schram, A.: Ultrastructure et cytochimie ultrastructurale de la vésicule germinative et du cytoplasme perinucléaire de l'ovocyte mur deXenopus laevis. J. Embryol. exp. Morph.20, 375–389 (1968).Google Scholar
  22. Geuskens, M.: Étude par autoradiographie et cytophotometrie du metabolisme des protéins basiques au cours de l'ovogénèse de l'ovocyte d'Asterie. Acad. roy belge Bull. Cl. Sci.51, 116–123 (1965).Google Scholar
  23. Hay, E. D., Revel, J. P.: The fine structure of the DNP component of the nucleus. An electron microscopic study utilizing autoradiography to localize DNA synthesis. J. Cell Biol.16, 29–30 (1963).Google Scholar
  24. Hope, J.: The fine structure of the developing follicle of the rhesus monkey. J. Ultrastruct. Res.12, 592–610 (1965).Google Scholar
  25. Kessel, R. G.: An electron microscope study of nuclear-cytoplasmic exchange in oocytes ofCiona intestinalis. J. Ultrastruct. Res.15, 181–196 (1966).Google Scholar
  26. —: Cytodifferentiation in theRana pipiens oocyte. J. Ultrastruct. Res.28, 61–77 (1969).Google Scholar
  27. —, Beams, H. W.: Annulate lamellae and “yolk nuclei” in oocytes of the dragonfly,Libellula Pulchella. J. Cell Biol.42, 185–201 (1969).Google Scholar
  28. Lechenault, H.: Les Proteins basiques nucléaires et cytoplasmiques au cours de la gamétogénèse animale. Annales Université et A.R.E.R.S.6, 37–43 (1968).Google Scholar
  29. Millonig, G., Bosco, M., Giambertone, L.: Fine structure analysis of oogenesis in sea urchins. J. exp. Zool.169, 293–314 (1968).Google Scholar
  30. Monroy, A., Maggio, R., Rinaldi, A. M.: Experimentally induced activation of ribosomes of the unfertilized sea urchin egg. Proc. nat. Acad. Sci. (Wash.)54, 107–111 (1965).Google Scholar
  31. Nass, S.: The significance of the structural and functional similarities of bacteria and mitochondria. Int. Rev. Cytol.25, 55–129 (1969).Google Scholar
  32. Norrevang, A.: Electron microscopic morphology of oogenesis. Int. Rev. Cytol.23, 113–186 (1968).Google Scholar
  33. Odor, D. L.: The ultrastructure of unilaminar follicles of the hamster ovary. Amer. J. Anat.116, 493–522 (1965).Google Scholar
  34. Ornstein, L.: Mitochondrial and nuclear interaction. J. biophys. biochem. Cytol.2, Suppl., 351–352 (1956).Google Scholar
  35. Rogers, A. W.: Techniques of autoradiography, chap. 17. Autoradiography with the electron microscope. Amsterdam-London-New York: Elsevier Publishing Co. 1967.Google Scholar
  36. Sanchez, S.: Formation et rôle des nucléoles des ovocytes deTriturus helveticus Ray — Étude autoradiographique et ultramicroscopique. J. Embryol. exp. Morph.22, 127–143 (1969).Google Scholar
  37. Seshachar, B. R., Bagga, S.: A cytochemical study of oogenesis in the dragonflyPantala flavescens (Fabricius). Growth27, 225–246 (1963).Google Scholar
  38. Spicer, S. S., Lillie, R. D.: Histochemical identification of basic proteins with Biebrich scarlet at alkaline pH. Stain Technol.36, 365–370 (1961).Google Scholar
  39. Spirin, A. S.: On “masked” forms of messenger RNA in early embryogenesis and in other differentiating systems. In: Current topics in developmental biology, vol. I, p. 1–38. London: Academic Press 1966.Google Scholar
  40. Taleporos, P.: Cytoplasmic “histones” and “protamines” in the egg of the sea urchinStrongylocentrotus purpuratus. J. Histochem. Cytochem.7, 322 (1959).Google Scholar
  41. Thomas, C.: Étude cytochimique au microscope électronique des structure à ARN et du glycogène dans le cytoplasme des oocytes deXenopus laevis. J. Embryol. exp. Morph.21, 165–176 (1969).Google Scholar
  42. Verhey, C. A., Moyer, F. H.: Fine structural changes during sea urchin oogenesis. J. exp. Zool.164, 195–225 (1967).Google Scholar
  43. Ward, T., Ward, E.: The multiplication of Golgi bodies in the oocytes ofRana pipiens. J. Microscopie7, 1007–1020 (1968).Google Scholar
  44. Weakley, B. S.: Electron microscopy of the oocyte and granulosa cells in the developing ovarian follicles of the golden hamster (Mesocricetus auratus). J. Anat. (Lond.)100, 503–534 (1966).Google Scholar
  45. —: Light and electron microscopy of developing germ cells and follicle cells in the ovary of the golden hamster: twenty-four hours before birth to eight dayspost partum. J. Anat. (Lond.)101, 435–459 (1967a).Google Scholar
  46. —: “Balbiani's body” in the oocyte of the golden hamster. Z. Zellforsch.83, 582–588 (1967b).Google Scholar
  47. —: Comparison of cytoplasmic lamellae and membranous elements in the oocytes of five mammalian species. Z. Zellforsch.85, 109–123 (1968).Google Scholar
  48. —: Granular cytoplasmic bodies in oocytes of the golden hamster during the post-natal period. Z. Zellforsch.101, 394–400 (1969).Google Scholar
  49. - Elias, J.: Unpublished observations (1970).Google Scholar
  50. Zahnd, J. P., Porte, A.: Signes morphologiques de transfert de matériel nucléaire dans le cytoplasme des ovocytes de certaines éspèces de Poissons. C. R. Acad. Sci. (Paris)262D, 1977–1978 (1966).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Brenda S. Weakley
    • 1
  1. 1.Department of AnatomyUniversity of DundeeDundeeScotland

Personalised recommendations