Oxidation of Metals

, Volume 31, Issue 1–2, pp 167–179 | Cite as

High-temperature oxidation of Fe-16.7% Mn-2.1% Ni-6.6% Si alloy in SO2

  • Y. H. Chung
  • M. J. McNallan


The oxidation of an austenitic Fe-16.7% Mn-2.1% Ni-6.6% Si (by weight) alloy in SO2 in the temperature range 600–900°C is described. The corrosion products formed on this alloy in this environment below 800°C consist only of oxides, rather than a mixture of oxides and sulfides as is observed for unalloyed Fe or Mn. The kinetics of oxidation of the alloy in SO2 in this temperature range are similar to those in O2. It is proposed that these characteristics result from the presence of a thin silicate layer near the scale-metal interface that alters the gradient of oxygen potential within the scale.

Key words

mixed oxidation sulfur dioxide austenitic alloys silicate scale 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. G. Fontana,Corrosion Engineering, 3rd ed. (McGraw-Hill, New York, 1986), p. 518.Google Scholar
  2. 2.
    M. L. Glenn, S. J. Bullard, D. E. Larson, and S. C. Rhoades,J. Mat. Energy Syst. 7, 75 (1985).Google Scholar
  3. 3.
    J. C. Rawers and D. E. Larson,Oxid. Met. 27, 103 (1987).Google Scholar
  4. 4.
    M. Cavallini, F. Felli, R. Fratesi, and F. Veniali,Werkst. Korr. 33, 386 (1982).Google Scholar
  5. 5.
    P. R. S. Jackson and G. R. Wallwork,High Temp. Technol. 1, 259 (1983).Google Scholar
  6. 6.
    R. Wang, M. J. Strazheim, and R. A. Rapp,Oxid. Met. 21, 71 (1984).Google Scholar
  7. 7.
    J. M. Oh, M. J. McNallan, and W. E. King,J. Electrochem. Soc. 133, 1042 (1986).Google Scholar
  8. 8.
    J. M. Oh and M. J. McNallan,J. Electrochem. Soc. 134, 1010 (1987).Google Scholar
  9. 9.
    N. Birks and G. H. Meier,Introduction to the High Temperature Oxidation of Metals (Edward Arnold, London, 1983), p. 131.Google Scholar
  10. 10.
    O. Kubaschewski and C. B. Alcock,Metallurgical Thermochemistry, 5th ed. (Pergamon Press, Oxford, 1979).Google Scholar
  11. 11.
    K. Natesan and S. J. Dapkunis,High Temperature Corrosion of Metals and Alloys, supplement toTransactions of the Japan Institute of Metals,24, 411 (1983).Google Scholar
  12. 12.
    S. Mrowec and P. Pryzbylski,Oxid. Met. 23, 107 (1985).Google Scholar
  13. 13.
    F. Gesmundo, C. de Asmundis, and C. Bottino,Oxid. Met. 14, 15 (1980).Google Scholar
  14. 14.
    F. Gesmundo, C. deAsmundis, S. Merlo, and C. Bottino,Werkst. Korr. 30, 179 (1979).Google Scholar
  15. 15.
    T. Flatley and N. Birks,J.I.S.I. 209, 523 (1971).Google Scholar
  16. 16.
    B. Chatterjee and A. J. Dowell,Corr. Sci. 10, 639 (1975).Google Scholar
  17. 17.
    F. S. Pettit, J. A. Goebel, and G. W. Goward,Corr. Sci. 9, 903 (1969).Google Scholar
  18. 18.
    A. RahmelCorr. Sci. 13, 125 (1973).Google Scholar
  19. 19.
    A. Rahmel,Oxid. Met. 9, 401 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Y. H. Chung
    • 1
  • M. J. McNallan
    • 1
  1. 1.Department of Civil Engineering, Mechanics, and MetallurgyUniversity of Illinois at ChicagoChicago

Personalised recommendations