Archives of oto-rhino-laryngology

, Volume 230, Issue 1, pp 81–92 | Cite as

Cytoskeletal and muscle-like elements in cochlear hair cells

  • Hans P. Zenner


Monospecific antibodies to actin and to tubulin were used as immunofluorescent probes to evaluate the distribution of microtubules and actin filaments in the organ of Corti in mouse and guinea pig. The results indicate that in cochlear receptor cells actin and actin filaments as well as tubulin and microtubules are integral cytoskeletal elements. The presence of actin suggests a possible contractile mechanism within the sensory cilia whereas tubulin is thought to play an important role in the stability of sensory cells. Both proteins are discussed to form structural elements required for the mechano-chemical coupling in hearing.

Key words

Hearing cells Stability Actin Tubulin Cytoskeleton Mechano-chemical coupling 







phosphate-buffered saline

Aktin und Tubulin — strukturelle und kontraktile Moleküle in den Sinneszellen der Cochlea


Monospezifische Antikörper gegen Aktin und Tubulin wurden in Kaninchen induziert und zum Nachweis von Mikrotubuli und Mikrofilamenten im Cortischen Organ von Mäusen und Meerschweinchen angewandt. Die Ergebnisse zeigen, daß Tubulin und Mikrotubuli Strukturelemente der Hörzellen sind, die deren Zytoskelett bilden. Während Mikrotubuli vorwiegend für die mechanische Stabilität der Haarzellen verantwortlich gemacht werden, läßt der Nachweis von Aktin die Möglichkeit eines kontraktilen Mechanismus in den Stereozilien zu. Für beide Proteine wird eine wesentliche Rolle bei der mechano-chemischen Kopplung des Hörorgans diskutiert.


Hörzellen Stabilität Aktin Tubulin Zytoskelett Mechano-chemische Kopplung 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Federspil P (1972) Über das Haarzellschädigungsmuster nach parenteraler Gentamycin-Applikation beim Meerschweinchen. Laryng Rhinol 51: 845Google Scholar
  2. 2.
    Flock Å, Flock B, Murray E (1977) Studies on the sensory hairs of receptor cells in the inner ear. Acta Otolaryngol 83: 85Google Scholar
  3. 3.
    Wersäll J (1967) Christae ampullares. In: Jurato S (ed) Submicroscopic structure of the inner ear. Pergamon Press, Oxford, p 185Google Scholar
  4. 4.
    Spoendlin H (1970) Auditory, vestibular, olfactory, and gustatory organs. In: Babel J, Bischoff A, Spoendlin H (eds) Ultrastructure of the peripheral nervous system and sensory organs. Thieme, Stuttgart, p 173Google Scholar
  5. 5.
    Korn ED (1978) Biochemistry of actomysin-dependent cell motility. Proc Natl Acad Sci USA 75: 588Google Scholar
  6. 6.
    Weber K (1976) Biochemical anatomy of microfilaments in cells in tissue culture using immunofluorescence microscopy. In: Perry SV, Margreth A, Adelstein RS (eds) Contractile systems in non-muscle tissues. North-Holland, Amsterdam, p 51Google Scholar
  7. 7.
    Olmsted JB, Borisy GG (1973) Microtubules. Annu Rev Biochem 42: 507Google Scholar
  8. 8.
    Flock Å, Cheung HC (1977) Actin filaments in sensory hairs of inner ear receptor cells. J Cell Biol 75: 339Google Scholar
  9. 9.
    Shelanski ML, Geskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci USA 70: 765Google Scholar
  10. 10.
    Zenner HP, Pfeuffer T (1976) Microtubular proteins in pigeon erythrocyte membranes. Eur J Biochem 71: 177Google Scholar
  11. 11.
    Dentler WL, Granett S, Rosenbaum JL (1975) Ultrastructural localisation of the high molecular weight proteins associated with microtubules. J Cell Biol 65: 237Google Scholar
  12. 12.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265Google Scholar
  13. 13.
    Cuatrecasas P, Wilcheck M, Anderson LB (1968) Selective enzyme purification by affinity chromatography. Proc Natl Acad Sci USA 61: 636Google Scholar
  14. 14.
    Fuller GM, Brinkley BR, Boughter JM (1975) Immunofluorescence of mitotic spindles by using monospecific antibody against bovine brain tubulin. Science 187: 948Google Scholar
  15. 15.
    Engström H, Acles HW, Hawkins JE Jr (1964) Cytoarchitecture of the organ of Corti. Acta Otolaryngol 188: 92Google Scholar
  16. 16.
    Mooseker MS, Tilney LG (1975) Organisation of an actin filament-membrane complex. J Cell Biol 67: 725Google Scholar
  17. 17.
    Matsumura F, Yoshimoto Y, Kamiya N (1980) Tension generation by actomyosin thread from a non-muscle system. Nature 285: 169Google Scholar
  18. 18.
    Harries F (1968) Brownian motion in the cochlear partition. J Acoust Soc Am 44: 176Google Scholar
  19. 19.
    Becker JS, Oliver JM, Berlin RD (1975) Fluorescence technique for following interactions of microtubule subunity and membranes. Nature 254: 152Google Scholar
  20. 20.
    Yahara J, Edelman GM (1972) Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A. Proc Natl Acad Sci USA 69: 608Google Scholar
  21. 21.
    Blitz AL, Fine RE (1974) Muscle-like contractile proteins and tubulin in synaptosomes. Proc Natl Acad Sci USA 71: 4472Google Scholar
  22. 22.
    Elias E, Hruban Z, Wade JB, Boyer JL (1980) Phalloidin-induced cholestasis, a microfilament-mediated change in junctional complex permeability. Proc Natl Acad Sci USA 77: 2229Google Scholar
  23. 23.
    Osborn M, Born T, Koitsch HJ, Weber K (1978) Three-dimensional arrangement of microfilaments, microtubules, and tonofilaments. Cell 14: 477Google Scholar
  24. 24.
    Salmon ED, Goode D, Maugel TK, Boudre DB (1976) Pressure-induced depolymerisation of spindle microtubules. J Cell Biol 69: 443Google Scholar
  25. 25.
    Tilney LG, Derosier DJ, Mulroy MJ (1980) The organization of actin filaments in the stereocilia of cochlear hair cells. J Cell Biol 86: 244Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Hans P. Zenner
    • 1
  1. 1.Department of OtolaryngologyUniversity of Würzburg Medical SchoolWürzburgFederal Republic of Germany

Personalised recommendations