Skip to main content
Log in

Computational modeling of mixed oxidation-carburization processes: Part 1

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Heat-resistant alloys used in mixed-oxidant environments rely on the formation of a chromia, alumina, or silica surface film for corrosion resistance and the presence of second-phase precipitates in the matrix often for their strength properties. The growth of the oxide film on such alloys is often accompanied by the dissolution of precipitates in the alloy subsurface region. Continued oxidation combined with oxide-scale spallation tends to decrease the content of the oxide-forming constituent to such a level that protective scaling can no longer occur and severe degradation can develop. In the present work, the initial corrosion processes involving the complex coupling between oxide scale growth and precipitate dissolution is simulated computationally. As an example, a Ni-Cr alloy containing Cr 23 C 6 precipitates was exposed to an oxidizing-carburizing environment. An approach combining finite difference and Newton-Raphson methodologies is developed to model this diffusion/ dissolution process, incorporating the point-defect-chemistry aspects of the oxide scale. The model is able to predict the chemical and microstructural evolution of high-chromium austenitic alloys during the initial stages of oxidation-carburization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Nowotny, ed.,Diffusion in Solids and High Temperature Oxidation of Metals (Trans Tech, Zürich, 1992).

    Google Scholar 

  2. R. Petkovic-Luton and T. A. Ramanarayanan,Oxid. Met. 34, 381–399 (1990).

    Google Scholar 

  3. F. S. Pettit, J. A. Goebel, and G. W. Goward,Corros. Sci. 9, 303 (1969).

    Google Scholar 

  4. A. Rahmel,Corros. Sci. 13, 125 (1973).

    Google Scholar 

  5. J. A. Colwell and R. A. Rapp,Met. Trans. A 17A, 1065 (1986).

    Google Scholar 

  6. C. Wagner, Diffusion and high temperature oxidation of metals, inAtom Movements (American Society for Metals, Cleveland, 1951), pp. 153–173.

    Google Scholar 

  7. K. Hauffe,Oxidation of Metals (Plenum, New York, 1965).

    Google Scholar 

  8. T. A. Ramanarayanan and R. Petkovic-Luton,Ber. Bunsenges. Phys. Chem. 89, 402–09 (1985).

    Google Scholar 

  9. P. Shewmon,Diffusion in Solids, 2nd Ed., Chap. 1: Diffusion Equations (TMS, Warrendale, 1989), pp. 9–51.

    Google Scholar 

  10. F. B. Hildebrand,Advanced Calculus for Applications, Chap. 7: Topics in Higher-Dimensional Calculus (Prentice-Hall, Englewood Cliffs, 1976), pp. 367–370.

    Google Scholar 

  11. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes, Chap. 9: Root Finding and Nonlinear Sets of Equations (Cambridge Univ., New York, 1986), p. 254.

    Google Scholar 

  12. G. D. Smith,Numerical Solution of Partial Differential Equations, Chap. 2: Parabolic Equations; Finite Difference Methods (Clarendon, Oxford, 1985) pp. 11–110.

    Google Scholar 

  13. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes, Chap. 17: Partial Differential Equations (Cambridge Univ., New York, 1986), p. 615.

    Google Scholar 

  14. C. Wagner,Z. Physik. Chem. B21, 25 (1933).

    Google Scholar 

  15. P. Kofstad and K. P. Lillerud,J. Electrochem. Soc. 127, 2410 (1980).

    Google Scholar 

  16. P. Kofstad,Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, Chap. 5: Diffusion and Electrical Conductivity (Wiley, New York, 1972), pp. 68–95.

    Google Scholar 

  17. P. Shewmon,Diffusion in Solids, 2nd Ed., Chap. 5: Diffusion in Nonmetals (TMS, Warrendale, 1989), pp. 151–187.

    Google Scholar 

  18. P. Shewmon,Diffusion in Solids, 2nd Ed., Chap. 2: Atomic Theory of Diffusion (TMS, Warrendale, 1989), pp. 53–96.

    Google Scholar 

  19. F. N. Mazandarany and R. D. Pehlke,J. Electrochem. Soc. 121, 711 (1974).

    Google Scholar 

  20. R. C. Weast and M. J. Astle, eds.,CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1981).

    Google Scholar 

  21. E. A. Brandes, ed.,Smithell's Metals Reference Book, 6th ed., Chap. 13: Diffusion in Metals (Butterworths, Boston, 1983) pp. 13–60.

    Google Scholar 

  22. R. P. Smith,Trans. Metall. Soc. AIME 236, 1224–1227 (1966).

    Google Scholar 

  23. F. N. Mazandarany and R. D. Pehlke,Metall. Trans. 4, 2067 (1973).

    Google Scholar 

  24. K. Bongartz, D. F. Lupton, and H. Schuster,Metall. Tran. A. 11A, 1883–1893 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, S., Ramanarayanan, T.A. & Petkovic-Luton, R. Computational modeling of mixed oxidation-carburization processes: Part 1. Oxid Met 40, 179–196 (1993). https://doi.org/10.1007/BF00665264

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665264

Key words

Navigation