Skip to main content
Log in

Oxidation and nitridation of niobium in air above 1150°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

When niobium is heated in static air, layers of oxides and nitrides form on the surface, depending on the temperature. At 1150–1500°C, a layer of solid Nb2O5 forms with linear growth kinetics. At 1500–1900°C, a layer of Nb2N forms under a two-phase layer of liquid oxide+solid NbO2. The two-phase oxide layer has linear growth kinetics, while the Nb2N layer has parabolic kinetics. Above 1900°C, successive layers of Nb2N, NbN, and liquid oxide form, with both nitrides exhibiting parabolic growth kinetics. The activation energies of layer growth are as follows: Q=105 kJ/mol for Nb2O5, 120 kJ/mol for the two-phase oxide layer, and 220 kJ/mol for Nb2N (Q for liquid oxide and NbN layer formation was not determined). Above 1500°C, the nitride layers are somewhat protective, in that they slow the oxide formation rate and prevent ignition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kofstad,High Temperature Corrosion (Elsevier Applied Science Publishers, Essex, England, 1988), p. 319.

    Google Scholar 

  2. J. W. Clark, inColumbium Metallurgy, D. L. Douglass and F. W. Kunz, eds. (Interscience Publishers, New York, 1961), pp. 615–647.

    Google Scholar 

  3. G. Z. Brauer,Z. Anorg. Chemie 248 (1941).

  4. R. P. Elliott,Trans. ASM 52 (1959).

  5. O. Kubaschewski and B. E. Hopkins, inNiobium, Tantalum, Molybdenum and Tungsten, A. G. Quarrel, ed. (Elsevier Publishing Company, New York, 1961), pp. 182–189.

    Google Scholar 

  6. R. P. Elliott and S. Komjathy, inColumbium Metallurgy, D. L. Douglass and F. W. Kunz, ed. (Interscience Publishers, New York, 1961), pp. 367–382.

    Google Scholar 

  7. N. Kieda, N. Mizutani, and M. Kato,Yogyo Kyokaishi 94, 1 (1986).

    Google Scholar 

  8. G. Z. Brauer and J. Jander,Z. Anorg. u. Allgem. Chem. 270 (1952).

  9. Yu. V. Levinskiiet al., Izv. Akad. Nauk SSSR, Metal. 1 (1973).

  10. G. V. Samsonov and I. M. Vinitskii,Handbook of Refractory Compounds (IFI/Plenum, New York, 1980), p. 222.

    Google Scholar 

  11. F. W. Wohlbier, ed.,Diffusion Data, Vol. 7, No. 4 (Diffusion Information Center, Cleveland, Ohio, 1973), p. 458.

    Google Scholar 

  12. E. A. Gulbransen and K. F. Andrew,Trans. AIME 188 (1950).

  13. R. P. Elliott and S. Komjathy, in Niobium Phase Diagrams, Armour Research Foundation, USAEC Contract No. AT (11-1)-515 (May 15, 1960).

  14. R. A. Pasternak, High Temperature Oxidation and Nitridation of Nb in Ultrahigh Vacuum, Final Report, July 1, 1963–October 31, 1964; NTIS order no. DE81026549:Con. Abstr., May 1982, p. 190, line 54.

  15. N. Schonberg,Acta Chem. Scand. 8, 2 (1954).

    Google Scholar 

  16. G. Brauer, inNiobium, Tantalum, Molybdenum and Tungsten, A. G. Quarrell, ed. (Elsevier Publishing Company, New York, 1961), pp. 121–127.

    Google Scholar 

  17. K. K. Schulzeet al., J. Met. 40, 10 (1988).

    Google Scholar 

  18. E. T. Turkdogen,Physical Chemistry of High Temperature Technology (Academic Press, New York, 1980), p. 17.

    Google Scholar 

  19. C. Catella and R. Streiff,J. Electrochem. Soc. 118, 6 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennessey, T.P., Morral, J.E. Oxidation and nitridation of niobium in air above 1150°C. Oxid Met 38, 163–187 (1992). https://doi.org/10.1007/BF00665050

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665050

Key words

Navigation