Advertisement

Oxidation of Metals

, Volume 38, Issue 1–2, pp 125–138 | Cite as

The effects of yttrium ion implantation on the oxidation of nickel-chromium alloys. I. The microstructures of yttrium implanted nickel-chromium alloys

  • J. M. Hampikian
  • D. I. Potter
Article

Abstract

Yttrium ions of 150 keV energy were implanted into the alloys Ni-20Cr, Ni-4Cr, and into nickel. The microstructures were then characterized using transmission electron microscopy, selected area channeling patterns and back-scattered electron images. Low yttrium fluences between 1×1014 and 5× 1015 Y+/cm2 did not alter the microstructures of Ni-20Cr. However, fluences of 1×1016, 5×1016, and 7.5×1016 caused the crystalline structures of the alloy to be replaced by an amorphous phase. Fluences of 7.5×1016 Y+/cm2 also rendered Ni-4Cr and nickel amorphous. Self-ion implantation experiments on Ni-20Cr did not cause the amorphous phase to form. The depth distribution of elements in Ni-20Cr following yttrium ion implantation (7.5× 1016 Y+/cm2) was determined by Auger electron spectroscopy. This showed in addition to the added yttrium a surface depletion in nickel concentration and a simultaneous enrichment in chromium concentration. At approximately 500 Å, the chromium concentration is approximately 32 at.%. This depletion/enrichment zone extends throughout the implanted layer. Annealing the Ni-20Cr implanted with 7.5×1016 Y+/cm2 in vacuum for one hour at 600°C resulted in the recrystallization of Ni-Cr solid solution and the formation of very fine grains of Y2O3. Annealing at 800°C for 5 minutes showed recrystallized Ni-Cr, Y2O3, and an additional phase or phases.

Keywords

Yttrium Y2O3 Amorphous Phase Auger Electron Spectroscopy Electron Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. P. Whittle and J. Stringer,Phil. Trans. Roy. Soc. Lond. A295, 309 (1980).Google Scholar
  2. 2.
    J. C. Pivin, C. Roques-Carmes, J. Chaumont, and H. Bernas,Corros. Sci. 20, 947 (1980).Google Scholar
  3. 3.
    F. H. Stott, J. S. Punni, G. C. Wood, and G. Dearnaley, inIon Implantation into Metals, V. Ashworthet al., eds. (Pergamon Press, NY, 1982), p. 245.Google Scholar
  4. 4.
    D. Loison, J. C. Pivin, and J. Chaumont, inIon Implantation into Metals, V. Ashworthet al., eds. (Pergamon Press, NY, 1982), p. 255.Google Scholar
  5. 5.
    C. H. Yang, G. E. Welsch, and T. E. Mitchell,Mater. Sci. Eng. 69, 351 (1985).Google Scholar
  6. 6.
    C. H. Yang, G. Welsch, and T. E. Mitchell,J. Mater. Sci. 25, 1724 (1990).Google Scholar
  7. 7.
    W. E. King, K. S. Grabowski, D. F. Mitchell, and P. M. Baldo,Oxid. Met. 31, 181 (1989).Google Scholar
  8. 8.
    P. Y. Hou and J. Stringer,Oxid. Met. 29, 45 (1988).Google Scholar
  9. 9.
    K. Przybylski, Proc. 10th Int. Symp. on Reactivity of Solids, Dijon, France, Aug. 27–Sept. 1, 1984, inMaterials Science Monographs, Vol. 28, P. Barret and L. C. Dufour, eds. (Elsevier, The Netherlands, 1985), p. 78.Google Scholar
  10. 10.
    K. Przybylski and G. J. Yurek, The reactive element effect on high temperature oxidation — After fifty years,Materials Science Forum, Vol. 43, W. E. King, ed. (Trans. Tech. Publications, Switzerland, 1989), p. 1.Google Scholar
  11. 11.
    W. E. King and K. S. Grabowski, inEnvironmental Degradation of Ion and Laser Beam Treated Surfaces, G. S. Was and K. S. Grabowski, eds. (TMS, Pennsylvania, 1989), p. 277.Google Scholar
  12. 12.
    C. S. Giggins and F. S. Pettit,Trans. TMS-AIME 245, 2509 (1969).Google Scholar
  13. 13.
    D. I. Potter, M. Ahmed, and S. Lamond,J. Met. 35, 17 (1982).Google Scholar
  14. 14.
    B. E. Warren,X-Ray Diffraction, Chap. 10 (Addison-Wesley, Reading, Massachusetts, 1969).Google Scholar
  15. 15.
    M. Ahmed and D. I. Potter,Acta Met. 33, 2221 (1985).Google Scholar
  16. 16.
    M. Saqib and D. I. Potter,Mater. Sci. Eng. 90, 81 (1987).Google Scholar
  17. 17.
    J. P. Biersack and L. G. Haggmark,Nucl. Instr. Meth. 174, 257 (1980).Google Scholar
  18. 18.
    G. R. Booker, inModern Diffraction and Imaging Techniques in Materials Science, S. Amelinckx, R. Gevers, G. Remaut, and J. Van Landuyt, eds. (North-Holland Publishing Company, Amsterdam, 1970), p. 613.Google Scholar
  19. 19.
    M. Ahmed and D. I. Potter,Acta Met. 35, 2341 (1987).Google Scholar
  20. 20.
    J. M. Hampikian, O. F. Devereux, and D. I. Potter,Mater. Sci. Eng. A116, 119 (1989).Google Scholar
  21. 21.
    V. Goerlach, P. Ziemann, and W. Buckel,Nucl. Inst. Meth. 209/210, 235 (1983).Google Scholar
  22. 22.
    D. I. Potter,Defect Diffusion Forum,61, 13 (1988).Google Scholar
  23. 23.
    C. S. Giggins and F. S. Pettit,Trans. TMS-AIME 245, 2495 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • J. M. Hampikian
    • 1
  • D. I. Potter
    • 2
  1. 1.School of Materials EngineeringGeorgia Institute of TechnologyAtlanta
  2. 2.Metallurgy Department and Institute of Materials ScienceUniversity of ConnecticutStorrs

Personalised recommendations