Oxidation of Metals

, Volume 35, Issue 5–6, pp 427–439 | Cite as

On the nature of “easy paths” for the diffusion of oxygen in thermal oxide films on aluminum

  • K. Shimizu
  • R. C. Furneaux
  • G. E. Thompson
  • G. C. Wood
  • A. Gotoh
  • K. Kobayashi


Thermal oxide films grown on electropolished aluminum specimens have been investigated by transmission electron microscopy of stripped oxide films and ultramicrotomed sections. Particular attention has been focused on the nucleation sites γ-Al2O3crystals and the relationship of such sites to surface features on the electropolished aluminum surface. It is evident that “easy paths” for the diffusion of oxygen, or the nucleation sites of γ-Al2O3crystals, are not distributed randomly over the electropolished aluminum surface, but form preferentially in the amorphous oxide layer grown over preexisting metal ridges. Thus, the diffusion of molecular oxygen through cracks in the amorphous oxide layer represents the most realistic and acceptable basis for explaining the local growth of the γ-Al2O3crystals in thermal oxide films on aluminum, although the cracks have not yet been observed directly.

Key Words

easy diffusion paths Al2O3 films γ-Al2O3 nucleation sites amorphous film 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Cabrera and N. F. Mott,Rep. Prog. Phys. 12, 163 (1948–49).Google Scholar
  2. 2.
    F. P. Fehlner and N. F. Mott,Oxid. Met. 2, 59 (1970).Google Scholar
  3. 3.
    W. W. Smeltzer,J. Electrochem. Soc. 103, 209 (1956).Google Scholar
  4. 4.
    E. A. Gulbransen and W. S. Wysong,J. Phys. Colloid. Chem. 57, 1087 (1947).Google Scholar
  5. 5.
    D. W. Aylmore, S. J. Gregg, and W. B. Jepson,J. Inst. Metals 88, 205 (1960).Google Scholar
  6. 6.
    M. S. Hunter and P. Fowle,J. Electrochem. Soc. 103, 482 (1956).Google Scholar
  7. 7.
    C. N. Cochran and W. C. Sleppy,J. Electrochem. Soc. 108, 322 (1961).Google Scholar
  8. 8.
    A. F. Beck, M. A. Heine, E. J. Caule, and M. J. Pryor,Corros. Sci. 7, 1 (1967).Google Scholar
  9. 9.
    G. E. Thompson, G. C. Wood, P. Skeldon, K. Shimizu, and S. H. Han,Phil. Mag. 55, 651 (1987).Google Scholar
  10. 10.
    K. Thomas and M. W. Roberts,J. Appl. Phys. 32, 70 (1961).Google Scholar
  11. 11.
    P. F. Doherty and R. S. Davis,J. Appl. Phys. 34, 619 (1963).Google Scholar
  12. 12.
    J. I. Eldridge, R. J. Hussey, D. F. Mitchell, and M. J. Graham,Oxid. Met. 30, 301 (1988).Google Scholar
  13. 13.
    R. C. Furneaux, G. E. Thompson, and G. C. Wood,Corros. Sci. 18, 853 (1978).Google Scholar
  14. 14.
    J. J. Randall and W. J. Bernard,J. Appl. Phys. 35, 1317 (1964).Google Scholar
  15. 15.
    M. J. Dignam and R. R. Fawcett,J. Electrochem. Soc. 113, 663 (1966).Google Scholar
  16. 16.
    S. F. Bubar and D. A. Vermilyea,J. Electrochem. Soc. 114, 882 (1967).Google Scholar
  17. 17.
    R. H. Henry, B. W. Alker, and P. C. Stair,Solid State Commun. 42, 23 (1982).Google Scholar
  18. 18.
    H. Saalfeld and B. Mehrotra,Ber. Deut. Keram. Ges. 42, 161 (1965).Google Scholar
  19. 19.
    T. K. N. Riley, Ph.D. thesis, (University of Manchester, 1972).Google Scholar
  20. 20.
    C. Edeleanu and J. T. Law,Phil. Mag. 7, 573 (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • K. Shimizu
    • 1
  • R. C. Furneaux
    • 1
    • 2
  • G. E. Thompson
    • 1
  • G. C. Wood
    • 1
  • A. Gotoh
    • 2
  • K. Kobayashi
    • 2
  1. 1.Corrosion and Protection CentreUniversity of Manchester Institute of Science and TechnologyManchesterUK
  2. 2.Department of Chemistry, Faculty of Science and TechnologyKeio UniversityYokohamaJapan

Personalised recommendations