Oxidation of Metals

, Volume 35, Issue 5–6, pp 375–395 | Cite as

The effects of boron additions on the oxidation of Fe-Cr alloys in high-temperature steam: Analytical results and mechanisms

  • P. N. Rowley
  • R. Brydson
  • J. Little
  • S. R. J. Saunders
  • H. Sauer
  • W. Engel
Article

Abstract

The oxide films formed on iron-chromium alloys in superheated steam have been investigated using a variety of microanalytical techniques, most notably electron energy loss spectroscopy. The addition of boron dopants leads to the rapid formation of a microcrystalline film of composition (Cr) x B 1}-x 2O3,which resists further oxidation. Analysis of the near-edge structures associated with each core-loss edge after different oxidation times allows us to postulate various mechanisms for the observed behavior.

Key Words

Fe-Cr boron steam EELS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. N. Rowley and J. A. Little,NACE Corrosion Research Symposium (Proc. Conf., New Orleans, April 17–19, 1989).Google Scholar
  2. 2.
    G. O. Lloyd, B. Kent, S. R. J. Saunders, and C. Lea,Phil. Trans. R. Soc. A295, 21 (1980).Google Scholar
  3. 3.
    P. N. Rowley, R. Brydson, J. Little, and S. R. J. Saunders, inProc. EMAG-Micro 89 (Conf. Ser. No 98, Vol. 2, p. 41), P. J. Goodhew and H. Y. Elder, eds. (IOP, London, 1990); P. N. Rowley, R. Brydson, J. Little, and S. R. J. Saunders,Phil. Mag. B (in press).Google Scholar
  4. 4.
    R. F. Egerton,Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum, New York, 1986).Google Scholar
  5. 5.
    C. Colliex, inAdvances in Optical and Electron Microscopy, V. E. Cosslett and R. Barer, eds. (Academic, London, 1984).Google Scholar
  6. 6.
    B. G. Williams,Progress in Solid State Chemistry 17, 87 (1987).Google Scholar
  7. 7.
    P. N. Rowley, Ph.D. thesis (University of Cambridge, 1990).Google Scholar
  8. 8.
    W. Engel, H. Sauer, R. Brydson, B. G. Williams, E. Zeitler, and J. M. Thomas,J. Chem. Soc. Faraday Trans. 1 84, 617 (1988).Google Scholar
  9. 9.
    R. F. Egerton, B. G. Williams, and T. G. Sparrow,Proc. R. Soc. Lond. 398, 395 (1985).Google Scholar
  10. 10.
    R. Brydson, J. M. Thomas, and B. G. Williams,J. Chem. Soc. Faraday Trans. 2 83, 747 (1987).Google Scholar
  11. 11.
    D. D. Vvedensky, D. K. Saldin, and J. B. Pendry,Computer Phys. Commun. 40, 421 (1986).Google Scholar
  12. 12.
    R. Brydson, J. Bruley, and J. M. Thomas,Chem. Phys. Letts. 149, 343 (1988).Google Scholar
  13. 13.
    R. Brydson, D. D. Vvedensky, W. Engel, H. Sauer, B. G. Williams, E. Zeitler, and J. M. Thomas,J. Phys. Chem. 92, 962 (1988).Google Scholar
  14. 14.
    C. Lea,Metal Science 13, 301 (1979).Google Scholar
  15. 15.
    G. O. Lloyd, S. R. J. Saunders, B. Kent, and A. Fursey,Corros. Sci. 17, 269 (1977).Google Scholar
  16. 16.
    H. J. Mathieu and D. Landolt,Surf. Interface Anal. 14, 744 (1989).Google Scholar
  17. 17.
    N. T. Barrett, P. N. Gibson, G. N. Greaves, P. Mackie, K. J. Roberts, and M. Sacchi,J. Phys. D: Appl. Phys. 22, 542 (1989).Google Scholar
  18. 18.
    W. Blau, R. Dudde, and H. Petersen,Solid State Communications 69, 147 (1989).Google Scholar
  19. 19.
    R. Szargen, K. H. Hallmeier, A. Meisel, and E. Hartmann, inInner Shell and X-Ray Physics of Atoms and Solids, D. J. Fabian, ed. (Plenum, New York, 1980).Google Scholar
  20. 20.
    D. J. Vaughan and J. A. Tossell,Am. Mineralogist 58, 765 (1973).Google Scholar
  21. 21.
    R. W. G. Wyckoff,Crystal Structures (Interscience, New York, 1960).Google Scholar
  22. 22.
    H. Sauer, R. Brydson, W. Engel, and P. N. Rowley,Proc. 12th International Congress on Electron Microscopy (Seattle, 1990).Google Scholar
  23. 23.
    F. M. F. de Groot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky, and H. Petersen,Phys. Rev. B 40, 5715 (1989).Google Scholar
  24. 24.
    C. Ortiz, T. Manoubi, and C. Colliex,J. de Physique C8, 2009 (1988).Google Scholar
  25. 25.
    T. Manoubi, Ph.D. thesis (Universite de Paris-Sud Centre D'Orsay, 1989).Google Scholar
  26. 26.
    S. Varga and J. Krempasky,J. Phys.: Condens. Matter 1, 7851 (1989).Google Scholar
  27. 27.
    G. H. Bowden and R. Thompson, inMellor's Comprehensive Treatise on Inorganic and Theoretical Chemistry (Vol. 5, Part A), R. Thompson, ed. (Longmans Green, New York, 1980).Google Scholar
  28. 28.
    M. Foex,Ann. Chim. 11, 359 (1939).Google Scholar
  29. 29.
    I. P. Graham, J. R. Myers, and R. K. Saxer,Corrosion 21, 196 (1965).Google Scholar
  30. 30.
    J. C. Joubert, T. Shirk, W. B. White, and R. Roy,Mat. Res. Bull. 3, 671 (1968).Google Scholar
  31. 31.
    J. G. White, A. Miller, and R. E. Nielsen,Acta Cryst. 19, 1060 (1965).Google Scholar
  32. 32.
    I. Bernal, C. W. Struck, and J. G. White,Acta Cryst. 16, 849 (1963).Google Scholar
  33. 33.
    A. Atkinson,Rev. Mod. Phys. 57, 437 (1985).Google Scholar
  34. 34.
    L. Tomlinson and N. J. Cory,Corr. Sci. 29, 939 (1989).Google Scholar
  35. 35.
    H. H. Uhlig,Zeit. Elektrochem. 62, 700 (1958).Google Scholar
  36. 36.
    E. A. Polman, T. Fransen, and P. J. Gellings,J. Phys.: Condens. Matter 1, 4497 (1989).Google Scholar
  37. 37.
    J. W. Cahn,Acta Met. 10, 789 (1962).Google Scholar
  38. 38.
    R. M. Kruger and G. S. Was,Met. Trans. 19A, 2555 (1988).Google Scholar
  39. 39.
    L. Karlsson and H. Norden,Proc. 4th JIM Int. Symp. on Grain Boundary Structure and Related Phenomena (Minakami, Japan, 1985).Google Scholar
  40. 40.
    M. G. C. Cox, B. McEnaney, and V. D. Scott,Nature 237, 140 (1972).Google Scholar
  41. 41.
    R. C. Weast,Handbook of Physics and Chemistry (CRC Press, Florida, 1989).Google Scholar
  42. 42.
    L. V. Azaroff,J. Appl. Phys. 32, 1658 (1961).Google Scholar
  43. 43.
    P. Kofstad,High Temperature Corrosion (Elsevier, London, 1988).Google Scholar
  44. 44.
    A. T. Fromhold,Theory of Metal Oxidation, Vol. 1 (North Holland, Amsterdam, 1976).Google Scholar
  45. 45.
    K. A. Hay, F. G. Hicks, and D. R. Holmes,Werkst. Korros. 21, 917 (1970).Google Scholar
  46. 46.
    G. V. Samsonov,The Oxide Handbook (IFI/Plenum, New York, 1982).Google Scholar
  47. 47.
    H. L. Tuller, inNon Stoichiometric Oxides, O. T. Sorenson, ed. (Academic Press, New York, 1981), p. 271.Google Scholar
  48. 48.
    Y. Y. Kim, K. H. Kim, and J. S. Choi,J. Phys. Chem. Solids 50, 903 (1989).Google Scholar
  49. 49.
    R. F. G. Gardner, F. Sweett, and D. W. Tanner,J. Phys. Chem. Solids 24, 1175 (1963).Google Scholar
  50. 50.
    R. J. Hussey, D. F. Mitchell, and M. J. Graham,Werkst. Korros. 38, 575 (1987).Google Scholar
  51. 51.
    W. E. Garner,Chemisorption (Butterworths, London, 1957).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • P. N. Rowley
    • 1
  • R. Brydson
    • 2
  • J. Little
    • 1
  • S. R. J. Saunders
    • 3
  • H. Sauer
    • 4
  • W. Engel
    • 4
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK
  2. 2.The Blackett LaboratoryImperial CollegeLondonUK
  3. 3.National Physical LaboratoryTeddingtonUK
  4. 4.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlin 33Germany

Personalised recommendations