Advertisement

Oxidation of Metals

, Volume 34, Issue 5–6, pp 473–496 | Cite as

The internal-nitriding behavior of 310 stainless steel with and without Al and Ti additions

  • I. C. Chen
  • D. L. Douglass
Article

Abstract

The internal-nitriding behavior in ammonia-hydrogen atmospheres of type-310 stainless steel and 310 to which either 2 wt.% Ti or 3 wt.% Al were added was studied over the range of 550–950°C. An Fe-24Cr binary alloy was included to assess the role of a BCC crystal structure vs the FCC crystal structure of 310 stainless steel. The BCC alloy exhibited the most rapid kinetics as expected. X-ray diffraction showed only the presence of CrN in all the alloys up to 735°C. At 850°C and above, both CrN and Cr2N were detected. The nonformation of TiN and AlN at lower temperatures is attributed to nucleation problems. Precipitates were extremely fine (unresolvable even at 20,000×) at 563°C and became much coarser with increasing temperature. The precipitate density, size, and shape varied across the internal-nitriding zone at the higher temperatures. External scaling was noted at 850°C and above, however, it was not a continuous film. The activation energy of internal nitriding from 563–735°C ranged from 3.8 kcal/mol for 310+2Ti to 18.2 kcal/mol for 310+3Al; from 850–950°C, the activation energy ranged from 44 (310+2Ti) to 56.6 kcal/mol (310+3Al). Microhardness profiles show that an intermediate zone exists between the nitride case and the base metal. The origin of this zone is discussed.

Key words

Internal nitriding 310 stainless steel austenitic kinetics microhardness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Wagner,Z. Elektrochem. 63, 92 (1952).Google Scholar
  2. 2.
    R. A. Rapp,Corrosion 21, 382 (1965).Google Scholar
  3. 3.
    L. E. Kindlimann and G. S. Ansell,Met. Trans. 1, 163 (1970).Google Scholar
  4. 4.
    D. C. Unthank, J. H. Driver, and K. H. Jack,Metal Science 8, 209 (1974).Google Scholar
  5. 5.
    J. M. Silcock,Metal Science 12, 561 (1978).Google Scholar
  6. 6.
    E. A. Trevillion,Metal Science 15, 393 (1981).Google Scholar
  7. 7.
    R. D. T. Whittle and V. D. Scott,Metals Technology 11, 231 (1984).Google Scholar
  8. 8.
    D. J. Coates and A. Hendry,Corr. Sci. 22, 973 (1982).Google Scholar
  9. 9.
    B. Mortimer, P. Grieveson, and K. H. Jack,Scand J. Metall. 1, 203 (1972).Google Scholar
  10. 10.
    G. N. Emmanuel,The Nature, Occurrence, and Effects of Sigma Phase (ASTM Spec. Tech. Publ. 110, 1950), p. 82.Google Scholar
  11. 11.
    A. F. Smith and G. B. Gibbs,Metal Science Journal 3, 93 (1969).Google Scholar
  12. 12.
    H. J. Grabke and E. M. Peterson,Scr. Met. 12, 1111 (1978).Google Scholar
  13. 13.
    D. Peckner and I. M. Bernstein,Handbook of Stainless Steels (McGraw Hill, New York, 1977), pp. 4–53.Google Scholar
  14. 14.
    J. F. Eckel and T. B. Cox,J. Materials 3, 605 (1968).Google Scholar
  15. 15.
    E. T. Turkdogan and S. Ignatowicz,J. Iron Steel Inst. 188, 242 (1958).Google Scholar
  16. 16.
    H. A. Wriedt and O. D. Gonzalez,Trans. AIME 221, 532 (1961).Google Scholar
  17. 17.
    R. W. Fountain and J. Chipman,Trans. AIME 212, 737 (1958).Google Scholar
  18. 18.
    H. J. Grabke,Z. Elektrochem. 72, 533 (1968).Google Scholar
  19. 19.
    P. Grieveson and E. T. Turkdogan,Trans Met. Soc. AIME 230, 407 (1964).Google Scholar
  20. 20.
    H. W. Paxton and T. Kunitake,Trans. AIME 218, 1003 (1960).Google Scholar
  21. 21.
    P. Haasen,Physical Metallurgy, 2nd ed. (Cambridge University Press, Cambridge, 1986), pp. 113–114.Google Scholar
  22. 22.
    H. J. Christ, H. Biermann, F. C. Rizzo, and H. G. Sockel,Oxid. Met. 13, 111 (1989).Google Scholar
  23. 23.
    H. H. Podgurski and H. E. Knechtel,Trans Met. Soc. AIME 245, 1595 (1969).Google Scholar
  24. 24.
    H. E. Evans, D. A. Hilton, and R. A. Holm,Oxid. Met. 11, 1 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • I. C. Chen
    • 1
  • D. L. Douglass
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of California, at Los AngelesLos Angeles

Personalised recommendations