Skip to main content
Log in

Deformation and cracking behavior of protective oxide scales on heat-resistant steels under tensile strain

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The deformation and cracking behavior of oxide scales formed in air on four heat-resistant steels and on nickel 99.6 have been studied in constant-extension-rate tests at 800°C. The strain rates in the experiments ranged between 10−6 and 10−9 s−1. Acoustic emission (AE) was used as an instrument for detecting the beginning of scale cracking. Additionally, metallographic, SEM, and micro-probe investigations were performed which supported the results from the AE measurements. The strain-to-cracking of the scales did not exceed 0.5% except when lateral growth effects in the oxide scales occurred, leading to critical strains of up to nearly 2.5%. Also the crack distribution in the scales was measured. The deformation and cracking behavior of the scales investigated could be explained by model like considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rahmel, ed.,Aufbau von Oxidschichten auf Hochtemperaturwerkstoffen und ihre technische Bedeutung (Deutsche Gesellschaft für Metallkunde, Oberursel, 1983).

    Google Scholar 

  2. M. I. Manning, in Ref. 1, p. 283.

    Google Scholar 

  3. M. I. Manning, inCorrosion and Mechanical Stress at High Temperatures (Applied Science Publishers, London, 1981), p. 323.

    Google Scholar 

  4. J. Armitt, D. R. Holmes, M. I. Manning, D. B. Meadowcroft, and E. Metcalfe, The spalling of steam grown oxide from superheater and reheater tube steels. EPRI Report FP 686 (1978).

  5. H. Riedel,Metal Sci. 16, 569 (1982).

    Google Scholar 

  6. J. C. Grosskreutz,J. Electrochem. Soc. 116, 1232 (1969).

    Google Scholar 

  7. H. E. Evans and R. C. Lobb,Corr. Sci. 24, 209 (1984).

    Google Scholar 

  8. A. G. Evans, G. B. Crumley, and R. E. Demaray,Oxid. Met. 20, 193 (1983).

    Google Scholar 

  9. G. V. Samsonow, ed.,The Oxide Handbook (IFI/Plenum, New York, 1973).

    Google Scholar 

  10. R. M. Cannon, W. H. Rhodes, and A. H. Heuer,J. Am. Ceramic Soc. 63, 46 (1980).

    Google Scholar 

  11. A. H. Heuer, N. J. Tighe, and R. M. Cannon,J. Am. Ceramic Soc. 63, 53 (1980).

    Google Scholar 

  12. R. M. Spriggs and T. Vasilos,J. Am. Ceramic Soc. 47, 47 (1964).

    Google Scholar 

  13. C. K. L. Davies,Phys. Metall. React. Fuel Elem. (Metals Society, London, 1975).

    Google Scholar 

  14. L. D. Hou, S. K. Tiku, H. Wang, and F. A. Kroeger,J. Mat. Sci. 14, 1877 (1979).

    Google Scholar 

  15. P. A. Lessing and R. S. Gordon,J. Mat. Sci. 12, 2291 (1977).

    Google Scholar 

  16. R. W. Cannon and O. D. Sherby,J. Am. Ceramic Soc. 60, 44 (1977).

    Google Scholar 

  17. B. J. Dalgleish, A. Fakhr, P. L. Pratt, and R. D. Rowlings,J. Mat. Sci. 14, 2605 (1979).

    Google Scholar 

  18. T. G. Langdon,Metal Forum 1, 59 (1978).

    Google Scholar 

  19. G. W. Groves,Proc. Br. Ceramic Soc. 15, 103 (1970).

    Google Scholar 

  20. R. v. Mises,Z. angew. Math. Mech. 8, 161 (1928).

    Google Scholar 

  21. A. G. Evans,Proc. Br. Ceramic Soc. 15, 113 (1970).

    Google Scholar 

  22. C. Gandhi and M. F. Ashby,Acta Met. 27, 1565 (1979).

    Google Scholar 

  23. B. Burton and G. L. Reynolds,J. Mat. Sci. 13, 219 (1978).

    Google Scholar 

  24. K. N. Strafford and G. Smith,Oxid. Met. 14, 119 (1980).

    Google Scholar 

  25. J. Cabrera-Cano and J. Castaing,J. Phys. Lett. 41, 119 (1980).

    Google Scholar 

  26. F. N. Rhines and J. S. Wolf,Met. Trans. 1, 1701 (1970).

    Google Scholar 

  27. M. J. Bennett and J. B. Price,Metallic Corrosion II (DECHEMA, Frankfurt, 1981), p. 1026.

    Google Scholar 

  28. K. P. Lillerud and P. Kofstad,J. Electrochem. Soc. 127, 2397 (1980).

    Google Scholar 

  29. P. Kofstad and K. P. Lillerud,J. Electrochem. Soc. 127, 2140 (1980).

    Google Scholar 

  30. M. Schütze and A. Rahmel,Corrosion Resistant Materials for Coal Conversion Systems (Applied Science Publishers, London, 1983), p. 439.

    Google Scholar 

  31. K.-H. Döhle, A. Rahmel, M. Schmidt, and M. Schütze, inRef. 3, p. 441.

    Google Scholar 

  32. J. Barbehön, K.-H. Dohle, and M. Schütze,Computer Appl. Lab. 5, 336 (1984).

    Google Scholar 

  33. F. A. Golightly, F. H. Stott, and G. C. Wood,Oxid. Met. 10, 163 (1976).

    Google Scholar 

  34. F. A. Golightly, G. C. Wood, and F. H. Stott,Oxid. Met. 14, 217 (1980).

    Google Scholar 

  35. R. G. Miner and V. Nagarajan,Oxid. Met. 16, 313 (1981).

    Google Scholar 

  36. D. Caplan and G. I. Sproule,Oxid. Met. 9, 459 (1975).

    Google Scholar 

  37. M. Welker, Diploma Thesis, University of Erlangen-Nürnberg (1983).

  38. M. Schütze and A. Rahmel,High Temperature Corrosion (NACE, Houston, 1983), p. 421.

    Google Scholar 

  39. M. Schütze and A. Rahmel, in Ref. 1, p. 245.

    Google Scholar 

  40. C. Coddet, G. de Barros, and G. Beranger, in Ref. 3, p. 417.

    Google Scholar 

  41. G. de Barros, G. Beranger, J. F. Chretien, and C. Coddet, Action concertée Metallurgie, Université Technologie de Compiegne (1980).

  42. R. C. Hurst and P. Hancock,Korr. 24, 33 (1973).

    Google Scholar 

  43. L. Berchtold, M. Welker, and H. G. Sockel,Werkstoffe Korr., to appear.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schütze, M. Deformation and cracking behavior of protective oxide scales on heat-resistant steels under tensile strain. Oxid Met 24, 199–232 (1985). https://doi.org/10.1007/BF00664232

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00664232

Key words

Navigation