Journal of Applied Spectroscopy

, Volume 37, Issue 1, pp 733–744 | Cite as

Automatic emission spectral analysis with photographic recording, automatic microphotometers, and computers

  • A. A. Boitsov


Analytical Chemistry Molecular Structure Spectral Analysis Photographic Recording Emission Spectral Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. B. Gorovits, N. S. Sventitskii, and D. P. Milenina, Atomic Spectroscopy and Spectral Analysis [in Russian], Naukova Dumka, Kiev (1974), pp. 223–227.Google Scholar
  2. 2.
    V. V. Polonik and I. A. Grikit, Atomic Spectroscopy and Spectral Analysis [in Russian], Naukova Dumka, Kiev (1974), pp. 146–149.Google Scholar
  3. 3.
    A. Schuringa, J. Kroonen, E. Donkersloot, et al., “Automatic control of the arc gap in dc arc-emission spectrographic analysis,” Chem. Instrum.,1, No. 3, 313–322 (1969).Google Scholar
  4. 4.
    Yu. N. Kuznetsov and Yu. I. Stakheev, “Mechanization and automation for operations in emission spectral analysis of powders,” Zavod. Lab.,35, No. 4, 435–442 (1969).Google Scholar
  5. 5.
    T. Török, J. Mika, and E. Gegus, Emission Spectrochemical Analysis, Akad. Kiadó, Budapest (1978).Google Scholar
  6. 6.
    M. P. Grishin, Sh. M. Kurbanov, and V. P. Markelov, Automatic Input and Processing of Photographic Images by Computer [in Russian], Énergiya, Moscow (1976).Google Scholar
  7. 7.
    A. N. Zhivichin and V. S. Sokolov, Interpretation of Photographic Images [in Russian], Nedra, Moscow (1980).Google Scholar
  8. 8.
    A. I. Saprykin, V. A. Gerasimov, and E. A. Saprykina, “Automatic spectrum processing and concentration calculation in photographic recording,” Zavod. Lab.,45, No. 2, 152–154 (1979).Google Scholar
  9. 9.
    C. Le Clainche, Systeme semiautomatique d'exploitation des enregistrements photographiques en spectrographie d'émission,” Analysis, 2, No. 5, 352–356 (1973).Google Scholar
  10. 10.
    V. I. Udalov and P. E. Gaivoronskii, “Machine processing of spark mass spectra,” Zh. Anal. Khim.,35, No. 9, 1831–1834 (1980).Google Scholar
  11. 11.
    T. V. Babushkina, G. G. Glavin, A. E. Zelenin, et al., “The random and systematic errors arising in processing the spectra from a spark mass spectrometer by computer,” Zh. Anal. Khim.,32, No. 6, 1086–1094 (1977).Google Scholar
  12. 12.
    V. I. Kovalev and É. Ya. Kononov, An Automatic System for Processing Photospectrograms [in Russian], Akademgorodok, Moscow Region (1977), (Preprint No. 1, Institute of Spectroscopy, Academy of Sciences of the USSR).Google Scholar
  13. 13.
    Abstracts for the Second All-Union Conference on Automation in Chemical Composition Analysis, Moscow, Dec. 22–24, 1980 [in Russian], Nauka, Moscow (1980).Google Scholar
  14. 14.
    V. N. Nikitin, É. B. Chamlik, B. A. Zubkovskii, et al., “An apparatus for automatic recording of photometric data,” Zh. Prikl. Spektrosk.,12, No. 6, 1143–1144(1970).Google Scholar
  15. 15.
    The MD-100 Microdensitometer: Instructions on Use, GDR, Carl Zeiss, Jena (1970).Google Scholar
  16. 16.
    L. Kozma, “Fényképészeti és fotometriái tényezök befolyása a spektrográfiás kiérlekelésre,” Magyar Kem. Folyoirat,85, No. 6, 266–271 (1979).Google Scholar
  17. 17.
    R. E. Mason, “A microphotometer digital readout system,” Appl. Spectrosc.,26, No. 2, 306–308 (1972).Google Scholar
  18. 18.
    B. A. R. Tait and I. S. Coats, A Rapid Method for the Analysis of Trace Elements in Rocks, Stream Sediments and Soils by Photographic Emission Spectrography using a Semiautomated Method of Plate Evaluation, HMSO, London (1976), (Rep. 76-11, Inst. Geol. Sci.).Google Scholar
  19. 19.
    L. S. Dale and R. N. Whittem, “A simple analog computing on-line microdensitometer,” Appl. Spectrosc.,30, No. 4, 469–471 (1976).Google Scholar
  20. 20.
    B. L. Taylor and F. T. Birks, “A method of processing data from automatic microphotometers for emission spectrographic analysis,” Analyst,97, No. 1158, 681–690 (1972).Google Scholar
  21. 21.
    B. A. Palmer, C. I. Sansonetti, and K. L. Andrew, “Automatic precision measurement of spectrograms,” Appl. Opt.,17, No. 15, 2280–2290 (1978).Google Scholar
  22. 22.
    R. Venkataraghavan, F. W. McLafferty, and I. W. Amy, “Automatic reduction of high-resolution mass spectral data,” Anal. Chem.,39, No. 2, 178–185 (1967).Google Scholar
  23. 23.
    D. M. Desiderio and T. E. Mead, “High resolution mass spectral photoplate data acquired and reduced with a real time remote time-shared digital computer,” Anal. Chem.,40, No. 14, 2090–2096 (1968).Google Scholar
  24. 24.
    E. F. Ditzel and L. E. Giddings, “A computer method for the automatic reduction of spectroscopic data,” Appl. Opt.,6, No. 12, 2085–2090 (1967).Google Scholar
  25. 25.
    R. Hoekstra and R. Slooten, “Automatic-comparator measurements of the spectrum of GdI and GdII,” Spectrochim. Acta,26B, No. 6, 341–348 (1971).Google Scholar
  26. 26.
    L. Radermacher and H. E. Beske, “Progress of element analysis without standards in spark-source mass spectrometry,” Spectrochim. Acta,34B, Nos. 2/3, 105–116 (1979).Google Scholar
  27. 27.
    M. Saito and H. Higashino, Recent Developments in Mass Spectroscopy, University Park Press, Baltimore-London-Tokyo (1970), pp. 358–361.Google Scholar
  28. 28.
    D. W. Steinhaus, R. Engleman, and W. L. Briscoe, “An automatic comparator for measurement of spectra,” Appl. Opt.,4, No. 7, 799–807 (1965).Google Scholar
  29. 29.
    A. Pilate and F. Adams, “A microcomputer-based system for the processing of spark-source mass spectrometry photoplates,” Anal. Chim. Acta,122, No. 1, 57–66 (1980).Google Scholar
  30. 30.
    A. W. Witmer, J. A. J. Jansen, et al., “A system for the automatic analysis of photographically recorded emission spectra,” Philips Tech. Rev.,34, Nos. 11/12, 322–329 (1974).Google Scholar
  31. 31.
    C. Claase, P. Jackson, and A. Strasheim, 21st Colloq. Spectrosc. Internat., Eighth Int. Conf. Atom. Spectrosc., 1–6 July 1979: Abstracts, Cambridge, U. K. (1979), p. 37.Google Scholar
  32. 32.
    H. De Lang, E. T. Ferguson, and G. C. M. Schoenaker, 1. “Displacement measurement with a reflection phase grating. 2. Displacement measurement with a laser interferometer,” Philips, Tech. Rev.,30, Nos. 6/7, 149–165 (1969).Google Scholar
  33. 33.
    A. W. Helz, F. G. Walthall, and S. Berman, “Computer analysis of photographed optical emission spectra,” Appl. Spectrosc.,23, No. 5, 508–518 (1969).Google Scholar
  34. 34.
    A. W. Helz, “Spectrochemical computer analysis: instrumentation,” J. Res. U.S. Geol. Survey,1, No. 4, 475–482 (1973).Google Scholar
  35. 35.
    C. P. Thomas, “A minicomputer-based emission spectrographic analysis system dependent on scanning microphotometry,” Appl. Spectrosc.,33, No. 6, 604–612 (1979).Google Scholar
  36. 36.
    C. D. Kylstra and R. T. Schneider, “Computerized spectrum analysis,” Appl. Spectrosc.,24, No. 1, 115–120 (1970).Google Scholar
  37. 37.
    M. P. Grishin, Automatic Processing of Photographic Images with a Computer [in Russian], Nauka i Tekhnika, Minsk (1976).Google Scholar
  38. 38.
    E. J. Millett, J. A. Morice, and J. B. Clegg, “The computer evaluation and interpretation of photographically recorded spark source mass spectra,” Int. J. Mass Spectrom. Ion Phys.,13, No. 1, 1–24 (1974).Google Scholar
  39. 39.
    D. Stüwer, “On-line evaluation of photoplates in spark-source mass-spectrometry,” Int. J. Mass. Spectrom. Ion Phys.,20, No. 4, 387–402 (1976).Google Scholar
  40. 40.
    F. G. Walthall, “Spectrochemical computer analysis: program description,” J. Res. U.S. Geol. Survey,2, No. 1, 61–71 (1974).Google Scholar
  41. 41.
    V. P. Pyalanis, A. A. Baradokas, and R. L. Kavalyauskas, “An automatic microphotometer,” Zh. Prikl. Spektrosk.,32, No. 1, 180 (1980).Google Scholar
  42. 42.
    T. Török and L. Vecsernyés, “Automatizálás, több információ, jobb elemzés!”, Kem. Kozlem.,49, Nos. 3–4, 319–328 (1978).Google Scholar
  43. 43.
    B. Vanderbourght and R. Van Grieken, “Automated evaluation of photographically recorded spark-source mass-spectra,” Anal. Chim. Acta,103, No. 3, 223–235 (1978).Google Scholar
  44. 44.
    E. Van Hoye, F. Adams, and R. Gijbels, “Critical evaluation of an automatic photoplate processing system for spark source mass spectra,” Bull. Soc. Chim. Belg.,84, No. 6, 595–615 (1975).Google Scholar
  45. 45.
    R. A. Burdo, J. R. Roth, and G. H. Morrison, “Photographic quantitation in spark source mass spectrography using an on-line densitometer,” Anal. Chem.,46, No. 6, 701–706 (1974).Google Scholar
  46. 46.
    M. A. Frisch and W. Reuter, “Automated evaluation of photographically recorded mass spectra,” Anal. Chem.,45, No. 11, 1889–1897 (1973).Google Scholar
  47. 47.
    H. J. Knab, “Auswertung von ionenempfindlichen Photoplatten durch ein computergesteuertes Graukeil-Densitometer,” Z. Naturforsch.,35, No. 1, 18–23 (1980).Google Scholar
  48. 48.
    L. A. Vylova, V. A. Zalite, G. Iskhakov, et al., “An automatic microphotometer on line with a computer: beta-spectrogram processing,” Prib. Tekh. Eksp., No. 1, 64–67 (1974).Google Scholar
  49. 49.
    J. Pellet and D. Ruquet, “Automatic evaluation of spectral data on photographic plates using a 400-channel analyzer,” Méthodes Phys. d'Anal.,5, No. 1, 3–7 (1969).Google Scholar
  50. 50.
    A. M. Kalashnikov, I. Yu. Petrov, and A. K. Sheremet'ev, “The M-6000 display for processing spectra,” Prib. Tekh. Eksp., No. 1, 72–73 (1979).Google Scholar
  51. 51.
    Ya. D. Raikhbaum, V. D. Malykh, and G. E. Erkovich, Applied Spectroscopy [in Russian], Nauka, Moscow (1969), pp. 456–459.Google Scholar
  52. 52.
    G. V. Antonov, N. T. Kazachkin, S. R. Chernyaev, et al., “A device for processing spectrograms,” Inventor's Certificate 333414, Byull. Izobret., No. 11 (1972).Google Scholar
  53. 53.
    L. A. Fergason and R. C. Young, “Determination of ion intensities from spark source mass spectrometry photoplates,” Appl. Spectrosc.,26, No. 6, 620–621 (1972).Google Scholar
  54. 54.
    “Computer compatible measuring engines,” Appl. Spectrosc.,23, No. 5 (1969).Google Scholar
  55. 55.
    M. P. Grishin, V. F. Gorenko, A. S. Ivanov, et al., “A fast automatic microdensitometer,” Opt.-Mekh. Prom., No. 9, 21–23 (1979).Google Scholar
  56. 56.
    M. Margoshes, “Data acquisition and computation in spectrochemical analysis: a forecast,” Spectrochim. Acta,25B, No. 3, 113–122 (1970).Google Scholar
  57. 57.
    C. P. Thomas, “An integrated-intensity method for emission spectrographic computer analysis,” J. Res. U.S. Geol. Survey,3, No. 2, 181–185 (1975).Google Scholar
  58. 58.
    R. J. Conzemius and D. J. Adduci, “Microphotometer modification for automatic recording of spark source mass spectra,” Anal. Chem.,48, No. 11, 1647–1651 (1976).Google Scholar
  59. 59.
    M. E. Korobkov and S. M. Kochubei, “A method of estimating the step size in differentiating spectral curves by computer,” Zh. Prikl. Spektrosk.,22, No. 6, 1093–1097 (1975).Google Scholar
  60. 60.
    Yu. Ya. Koni, “Digital processing of line spectra,” Zh. Prikl. Spektrosk.,23, No. 1, 126–130 (1975).Google Scholar
  61. 61.
    A. P. Kucherov and A. M. Yaremko, “A simple method of separating heavily overlapping spectral bands by computer,” Zh. Prikl. Spektrosk.,29, No. 5, 932–934 (1978).Google Scholar
  62. 62.
    G. Brower and J. A. J. Jansen, “Deconvolution method for identification of peaks in digitized spectra,” Anal. Chem.,45, No. 13, 2239–2247 (1973).Google Scholar
  63. 63.
    V. K. Prokof'ev, Photographic Methods of Quantitative Spectral Analysis. Part 2. Techniques [in Russian], Gos. Izd. Tekh-Teor. Lit., Moscow-Leningrad (1951).Google Scholar
  64. 64.
    A. G. Orlov, Calculation Methods in Quantitative Spectral Analysis [in Russian], Nedra, Leningrad (1977).Google Scholar
  65. 65.
    C. R. Boswell, S. S. Berman, and D. S. Russell, “Photographic emulsion calibration with the use of a digital computer,” Appl. Spectrosc.,23, No. 3, 268–273 (1969).Google Scholar
  66. 66.
    T. Török and K. Zimmer, Quantitative Evaluation of Spectrograms by Means of L-Transformation, Akademiaikiado, Budapest (1972).Google Scholar
  67. 67.
    R. Gerbatsch and I. Bächer, “Zur photographischen Registrierung in der emissions-Spektralanalyse,” Fr. Zs. Anal. Chem.,225, No. 2, 81–89 (1967).Google Scholar
  68. 68.
    V. I. Belousov, V. P. Bedrinov, V. M. Gladskoi, et al., “Comparison of two methods of calculating trace element contents in mass spectral analysis,” Zavod. Lab.,40, No. 4, 428–430 (1974).Google Scholar
  69. 69.
    O. D. Gorokhov and V. N. Nikitin, “Improved processing of spectral analysis data by computer,” Zh. Prikl. Spektrosk.,20, No. 1, 22–27 (1974).Google Scholar
  70. 70.
    A. A. Boitsov and Kh. I. Zil'bershtein, “Spectral determination of traces of rare-earth elements in cerium dioxide single crystals with calculation by minicomputer,” Zh. Prikl. Spektrosk.,21, No. 4, 764 (1974).Google Scholar
  71. 71.
    G. R. Lerner and É. I. Tabachnik, “Use of the spline method for approximating some relationships derived in emission spectral analysis,” Zh. Prikl. Spektrosk.,21, No. 2, 217–222 (1974).Google Scholar
  72. 72.
    J. M. McCrea, Developments in Applied Spectroscopy, Plenum Press, New York (1965).Google Scholar
  73. 73.
    J. W. Anderson and A. J. Lincoln, “General mathematical approach to emulsion calibration in optical emission Spectroscopy,” Appl. Spectrosc.,22, No. 6, 753–757 (1968).Google Scholar
  74. 74.
    M. Margoshes and S. D. Rasberry, “Application of digital computers in spectrochemical analysis: computational methods in photographic microphotometry,” Spectrochim. Acta,24B, No. 9, 497–513 (1969).Google Scholar
  75. 75.
    R. J. Decker and D. J. Eve, “The use of a digital computer in dc arc spectrographic analysis,” Spectrochim. Acta,25B, No. 9, 486–497 (1970).Google Scholar
  76. 76.
    M. Malinek, “Calibration of emulsions using the Kaiser transform with a digital computer,” Can. J. Spectrosc.,20, No. 3, 68–70 (1975).Google Scholar
  77. 77.
    J. A. Holcombe, D. W. Brinkman, and R. D. Sacks, “FORTRAN-based photographic emulsion calibration procedure for use in quantitative spectrometry,” Anal. Chem.,47, No. 3, 441–447 (1975).Google Scholar
  78. 78.
    J. R. Woodyard, B. C. Piper, and K. R. Stever, “The functional form of the emulsion calibration curve,” Appl. Spectrosc.,33, No. 1, 25–28 (1979).Google Scholar
  79. 79.
    M. Matherny, “Einsatz von Rechenanlagen in der Emissionsspektrometrie: Definition der Probleme und die Schwärzungstransformation,” Anal. Chim. Acta,112, No. 3, 277–286 (1979).Google Scholar
  80. 80.
    C. S. Joyce, “The use of a digital computer for photographic photometry and spectrochemical computations,” Can. J. Spectrosc.,10, No. 2, 33–37 (1965).Google Scholar
  81. 81.
    D. M. Shaw, “Principles of machine computation of spectrochemical analysis,” Can. Spectrosc.,10, No. 1, 3–6 (1965).Google Scholar
  82. 82.
    D. R. Blevins and W. R. O'Neill, “Spectrographic calculations with computerized emulsion calibration and programmable calculator computations,” Appl. Spectrosc.,30, No. 2, 190–195 (1976).Google Scholar
  83. 83.
    B. H. Strauss, “Use of a desk programmable computer for calculating the calibration curve of a photographic emulsion for spectrographic analysis,” Talanta,24, No. 8, 524–529 (1977).Google Scholar
  84. 84.
    D. D. Tunnicliff and J. K. Weaver, “Automatic data processing, interpreting and reporting of results of emission spectrographic analyses,” Anal. Chem.,36, No. 2, 2318–2321 (1964).Google Scholar
  85. 85.
    L. A. Gribov and M. E. Élyashberg, “Qualitative molecular spectral analysis by computer,” Zh. Anal. Khim.,32, No. 10, 2025–2043 (1977).Google Scholar
  86. 86.
    I. A. Krinberg and E. V. Smirnova, Spectral Analysis for Trace Elements in Rocks [in Russian], Nauka, Moscow (1972), pp. 76–80.Google Scholar
  87. 87.
    G. A. Sheinina and A. B. Sheinin, “Application of a computer to automate routine calculations in spectral analysis,” Zh. Prikl. Spektrosk.,6, No. 2, 264–267 (1967).Google Scholar
  88. 88.
    B. N. Pyatunin, L. A. Beloshitskii, and I. B. Lapinskaya, “A computer in the spectral laboratory of an industrial organization,” Zh. Prikl. Spektrosk.,10, No. 1, 172–176 (1969).Google Scholar
  89. 89.
    A. Dombi and E. Gegus, “Quantitative determination of trace elements in silicate based substances by spectrographic methods using continuous solution feed. 2. Construction of a computer program for the evaluation of analytical results and for the comparison of techniques,” Acta Chim. Acad. Sci. Hung.,94, No. 4, 295–300 (1977).Google Scholar
  90. 90.
    A. F. Dorrzapf, “Spectrochemical computer analysis-argon-oxygen de arc method for silicate rocks,” J. Res. U.S. Geol. Survey,1, No. 5, 559–562 (1973).Google Scholar
  91. 91.
    N. A. Makulov, “An algorithm for spectral analysis of multicomponent substances,” Zavod. Lab.,39, No. 11, 1330–1333 (1973).Google Scholar
  92. 92.
    V. D. Ivanova, I. N. Taganov, and K. I. Taganov, “Ways of constructing and applying computer programs in emission spectral analysis,” Zh. Prikl. Spektrosk.,4, No. 1, 3–6 (1966).Google Scholar
  93. 93.
    V. D. Romanova, “Automatic method of processing emission spectra in spectral analysis,” Zh. Prikl. Spektrosk.,16, No. 1, 33–38 (1972).Google Scholar
  94. 94.
    I. I. Trilesnik and V. D. Romanova, “Automation of emission spectral analysis with quantometers and computers,” Opt.-Mekh. Prom., No. 1, 47–51 (1976).Google Scholar
  95. 95.
    L. De Galan, “The possibility of a truly absolute method of spectrographic analysis,” Anal. Chim. Acta,34, No. 1, 2–8 (1966).Google Scholar
  96. 96.
    O. D. Gorokhov and V. N. Nikitin, “A computer for correcting structural errors in spectral information,” Zh. Prikl. Spektrosk.,23, No. 2, 268–272 (1975).Google Scholar
  97. 97.
    J. W. Cooper, “Errors in computer data handling,” Anal. Chem.,50, No. 8, A801-A812 (1978).Google Scholar
  98. 98.
    Yu. N. Zakharov, V. S. Baskov, and M. N. Palladin, “Spectral analytical features of TV recording methods,” Zavod. Lab.,39, No. 8, 964–966 (1973).Google Scholar
  99. 99.
    A. Danielsson and P. Lindblom, “An echelle spectrograph for image tubes,” Phys. Scripta,5, Nos. 4–5, 227–231 (1972).Google Scholar
  100. 100.
    N. G. Howell and G. H. Morrison, “Evaluation of silicon vidicon detector sensitivity for atomic spectrometry applications,” Anal. Chem.,49, No. 1, 106–113 (1977).Google Scholar
  101. 101.
    G. Horlick, E. G. Codding, and S. T. Leung, “Automated direct current arc time studies using a computer-coupled photodiode array spectrometer,” Appl. Spectrosc.,29, No. 1, 48–52 (1975).Google Scholar
  102. 102.
    H. Bubert, W.-D. Hagenah, and K. Laqua, “Lineare Silizium-Photodioden-Matrizen mit parallelem Datenausgang als Strahlungs-empfänger in der optischen Emissionsspektroskopie. 1. Messanordnung und Analysen mit Eunkenstrahlungsquelle,” Spectrochim. Acta,33B, No. 9, 701–711 (1978).Google Scholar
  103. 103.
    V. A. Nikitin, “Commercial spectral instrumentation in the USSR,” Zh. Prikl. Spektrosk.,12, No. 4, 583–595 (1970).Google Scholar
  104. 104.
    A. Z. Zhmudskii, L. F. Chestnykh, and V. F. Surzhko, “A sensitive method of spectrogram photometry,” Zavod. Lab.,36, No. 9, 1100 (1970).Google Scholar
  105. 105.
    N. V. Alekseev, P. P. Barzdai, É. I. Revekina, et al., “An improved recording part for the MF-4 microphotometer,” Prib. Tekh. Eksp., No. 3, 237–238 (1971).Google Scholar
  106. 106.
    É. M. Gal'perina, “Some ways of improving the sensitivity in spectral analysis,” Nauch. Tashk. Univ.,332, 35–46 (1968).Google Scholar
  107. 107.
    V. Kh. Mironovskii and A. Ya. Stagis, “A microphotometer with recording on an automatic potentiometer,” Zavod. Lab.,34, No. 9, 1151 (1968).Google Scholar
  108. 108.
    V. M. Samkov, “Updating of the measurement section of the IFO-451 microphotometer,” Zavod. Lab.,44, No. 6, 689–691 (1978).Google Scholar
  109. 109.
    V. M. Nizel' and S. G. Salyaev, “A stabilizer for the MF-2 microphotometer,” Zavod. Lab.,41, No. 11, 1345–1346 (1975).Google Scholar
  110. 110.
    I. D. Guzeev, I. A. Maiorov, V. V. Nedler, et al., “A device for photometering spectral lines,” Inventor's Certificate No. 368498, Byull. Izobret., No. 9 (1973).Google Scholar
  111. 111.
    V. N. Apolitskii, “An attachment to the MF-2 microphotometer,” Nauch. Trudy Irkutsk. NII Redk. i Tsvetn. Met.,22, 152–155 (1971).Google Scholar
  112. 112.
    D. Hoeschen and W. Mirande, “Ein Mikrodensitometer mit einem He-Ne Laser als Strahlungsquelle,” Optik,48, No. 5, 459–470 (1977).Google Scholar
  113. 113.
    L. Kozma, G. Heltai, K. Zimmer, et al., 21st Colloq. Spectrosc. Internat., 8th Int. Conf. Atom. Spectrosc. (1–6 July 1979); Abstracts, Cambridge, U. K. (1979), p. 36.Google Scholar
  114. 114.
    E. Ziegler, Euroanalysis Conf. 2 (Budapest, 1975): Reviews on Anal. Chem., Akad. Kiado, Budapest (1977), pp. 229–248.Google Scholar
  115. 115.
    Yu. G. Tatsii, Yu. I. Belyaev, and I. P. Alimarin, “Computers in analytical chemistry (review),” Zh. Anal. Khim.,31, No. 3, 521–542 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • A. A. Boitsov

There are no affiliations available

Personalised recommendations