Skip to main content
Log in

Cavitation failure of austenitic and martensitic steels in liquid oxygen

  • Structural Steels
  • Published:
Metal Science and Heat Treatment Aims and scope

Conclusion

Austenitic steels with unstable austenite at low temperatures have the highest cavitation resistance in liquid oxygen. The cavitation resistance of martensitic (N9, G7) and transition steels (SN2AL) is some-what lower but fairly high, and the cavitation resistance can be increased substantially by tempering in the temperature range at which the reverse martensitic transformation begins. Stabilized austenitic steels (10Kh11N23T3MR, N36, G38) have low cavitation resistance in liquid oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. I. N. Bogachev and R. I. Mints, Increasing the Cavitation-Erosion Resistance of Machine Parts [in Russian], Mashinostroenie, Moscow (1964).

    Google Scholar 

  2. O. A. Bannykh and Yu. K. Kovneristyi, Steels for Operation at Low Temperatures [in Russian], Metallurgiya, Moscow (1969), p. 13.

    Google Scholar 

  3. G. A. Charushnikova, Ya. E. Gol'dshtein, and Yu. G. Razumov, "Effect of deoxidation on fracture of high-manganese steel", Metal. i Term. Obrabotka Metal., No. 7, 33 (1969).

    Google Scholar 

  4. I. N. Bogachev and V. P. Korobeinikov, "Rate of cavitation erosion in liquid oxygen in relation to static pressure", Akusticheskii Zh.,17, No. 4, 533 (1971).

    Google Scholar 

  5. I. N. Bogachev, V. S. Litvinov, and R. I. Mints, "Characteristics of plastic deformation of manganese and nickel austenitic alloys", Fiz. Metal. Metalloved.,16, No. 4, 596 (1963).

    Google Scholar 

  6. V. P. Mar'evich and R. Sh. Shklyar, "Internal friction in nickel and manganese austenite", Fiz. Metal. Metalloved.,15, No. 6, 914 (1963).

    Google Scholar 

  7. V. S. Litvinov, D. A. Mirzoev, and R. Sh. Shklyar, "Lattice defects in nickel and manganese austenitic alloys", Fiz. Metal. Metalloved., No. 3, 467 (1964).

    Google Scholar 

  8. Ya. D. Vishnyakov, Stacking Faults in Crystal Structure [in Russian], Metallurgiya, Moscow (1970), p. 127.

    Google Scholar 

  9. B. A. Potekhin and I. N. Bogachev, "Stress relaxation in Cr−Mn austenitic steel", Fiz. Metal. Metalloved.,18, No. 2, 257 (1964).

    Google Scholar 

  10. I. N. Bogachev, V. P. Korobeinikov, and S. B. Rozhkova, "Effect of testing temperature on phase composition, mechanical properties, and cavitation resistance of unstabilized austenitic steels", Probl. Prochnosti, No. 12, 88 (1971).

    Google Scholar 

Download references

Authors

Additional information

S. M. Kirov Polytechnical Institute. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 9–14, March, 1976.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korobeinikov, V.P., Rozhkova, S.B. & P'yankov, B.N. Cavitation failure of austenitic and martensitic steels in liquid oxygen. Met Sci Heat Treat 18, 200–204 (1976). https://doi.org/10.1007/BF00663476

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00663476

Keywords

Navigation