Colloid and Polymer Science

, Volume 274, Issue 2, pp 117–137 | Cite as

Comparative studies of structural properties and conformational changes of proteins by analytical ultracentrifugation and other techniques

  • H. Durchschlag
  • P. Zipper
  • G. Purr
  • R. Jaenicke
Original Contribution


Analytical ultracentrifugation is a powerful tool for investigating the size of proteins in solution, especially by measuring sedimentation and diffusion coefficients and molar masses. Several further molecular parameters such as frictional ratios, axial ratios of hydrodynamic models, and Stokes radii allow a rough estimate of the protein overall structure. Sedimentation analysis may also be applied efficaciously for monitoring conformational changes of proteins occurring upon ligand binding or denaturation. For the determination of very small changes in shape, however, great care and a series of precautions are required. We investigated the enzymes citrate synthase and malate synthase in the absence and in the presence of ligands, in order to study the structural properties of the proteins and their ligand complexes. We also compared the results of the ultracentrifugal analysis with the results of other solution techniques such as UV absorption, fluorescence spectroscopy, circular dichroism, and small-angle x-ray scattering on the one hand, and the crystallographic 3D structure of citrate synthase on the other. The spectroscopic methods may be used as efficient and rapid tools for screening the occurrence of conformational changes caused by alterations of chromophores and fluorophores. The structural information provided by small-angle scattering (e.g., radii of gyration, maximum particle diameters, vclumes and surface areas) can be used to establish quantitative correlations between solution scattering and hydrodynamic data. In this context, however, knowledge or qualified assumptions of partial specific volumes and hydration are additionally required. Good agreement was reached between small-angle scattering and ultracentrifugal data, and also with crystallographic data if protein hydration was considered properly. The given approaches may be used to predict hydrodynamic properties if x-ray data are available, and for many verifications of other structural data, e.g., Stokes radii, diffusion coefficients, axial and frictional ratios determined by independent methods.

Key words

Proteins citrate synthase malate synthase analytical ultracentrifugation small-angle scattering comparative studies predictions structural properties hydrodynamic modeling conformational changes 

Abbreviations materials


acetyl coenzyme A


coenzyme A


citrate synthase (EC




guanidinium chloride


malate synthase (EC


analytical ultracentrifugation


circular dichroism


fluorescence emission spectroscopy


fluorescence excitation spectroscopy


small-angle scattering


small-angle x-ray scattering


ultraviolet absorption spectroscopy


x-ray diffraction



oblate ellipsoidal model


prolate ellipsoidal model


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Remington S, Wiegand G, Huber R (1982) J Mol Biol 158: 111–152Google Scholar
  2. 2.
    Wiegand G, Remington S, Deisenhofer J, Huber R (1984) J Mol Biol 174:205–219Google Scholar
  3. 3.
    Polson A (1950) J Phys Colloid Chem 54:649–652Google Scholar
  4. 4.
    Mandelkern L, Flory PJ (1952) J Chem Phys 20:212–214Google Scholar
  5. 5.
    Scheraga HA, Mandelkern L (1953) J Am Chem Soc 75:179–184Google Scholar
  6. 6.
    Polson A (1967) Biochim Biophys Acta 140:197–200Google Scholar
  7. 7.
    Squire PG, Himmel ME (1979) Arch Biochem Biophys 196:165–177Google Scholar
  8. 8.
    Young ME, Carroad PA, Bell RL (1980) Biotechnol Bioeng 22:947–955Google Scholar
  9. 9.
    Dang CV, Dang CV (1983) Biochem Biophys Res Commun 117:464–469Google Scholar
  10. 10.
    Tyn MT, Gusek TW (1990) Biotechnol Bioeng 35:327–338Google Scholar
  11. 11.
    Müller JJ (1991) Biopolymers 31: 149–160Google Scholar
  12. 12.
    Perrin F (1934) J Phys Radium, Série VII, 5:497–511Google Scholar
  13. 13.
    Perrin F (1936) J Phys Radium, Série VII, 7:1–11Google Scholar
  14. 14.
    Kirkwood JG (1954) J Polym Sci 12:1–14Google Scholar
  15. 15.
    Teller DC (1976) Nature (London) 260:729–731Google Scholar
  16. 16.
    Teller DC, Swanson E, De Haën C (1979) Meth Enzymol 61:103–124Google Scholar
  17. 17.
    García de la Torre J, Bloomfield VA (1981) Quart Rev biophys 14:81–139Google Scholar
  18. 18.
    García de la Torre J (1989) In: Harding SE, Rowe AJ (eds) Dynamic Properties of Biomolecular Assemblies. Royal Society of Chemistry, Cambridge UK, pp 3–31Google Scholar
  19. 19.
    García de la Torre J (1992) In: Harding SE, Rowe AJ, Horton JC (eds) Analytical Ultracentrifugation in Biochemistry and Polymer Science. Royal Society of Chemistry, Cambridge UK, pp 333–345Google Scholar
  20. 20.
    García de la Torre J, Navarro S, Lopez Martinez MC, Diaz FG, Lopez Cascales JJ (1994) Biophys J 67:530–531Google Scholar
  21. 21.
    Harding SE (1989) In: Harding SE, Rowe AJ (eds) Dynamic Properties of Biomolecular Assemblies. Royal Society of Chemistry, Cambridge UK, pp 32–56Google Scholar
  22. 22.
    Byron O (1995) In: Behlke J (ed) Abstracts of the IX Symposium on Analytical Ultracentrifugation. Max-Delbrück-Centrum für Molekulare Medizin, Berlin-Buch, p 24Google Scholar
  23. 23.
    Glatter O, Kratky O, eds (1982) Small Angle X-ray Scattering. Academic Press, LondonGoogle Scholar
  24. 24.
    Durchschlag H (1993) In: Baiann IC, Pessen H, Kumosinski TF (eds) Physical Chemistry of Food Processes, Vol 2: Advanced Techniques, Structures, and Applications, Van Nostrand Reinhold, New York, pp 18–117Google Scholar
  25. 25.
    Kumosinski TF, Pessen H (1982) Arch Biochem Biophys 219:89–100Google Scholar
  26. 26.
    Kumosinski TF, Pessen H (1985) Meth Enzymol 117:154–182Google Scholar
  27. 27.
    Pessen H, Kumosinski TF (1993) In: Baianu IC, Pessen H, Kumosinski TF (eds) Physical Chemistry of Food Processes, Vol 2: Advanced Techniques, Structures, and Applications. Van Nostrand Reinhold, New York, pp 274–306Google Scholar
  28. 28.
    Müller JJ, Damaschun H, Damaschun G, Gast K, Plietz P, Zirwer D (1984) Stud Biophys 102:171–175Google Scholar
  29. 29.
    Müller JJ, Pankow H, Poppe B, Damaschun G (1992) J Appl Cryst 25:803–806Google Scholar
  30. 30.
    Durchschlag H, Biedermann G, Eggerer H (1981) Eur J Biochem 114:255–262Google Scholar
  31. 31.
    Zipper P, Durchschlag H (1978) Eur J Biochem 87:85–99Google Scholar
  32. 32.
    Wilfing R (1985) Thesis, Univ Graz, AustriaGoogle Scholar
  33. 33.
    Durchschlag H, Zipper P, Wilfing R, Purr G (1991) J Appl Cryst 24:822–831Google Scholar
  34. 34.
    Durchschlag H, Goldmann K, Wenzl S, Durchschlag H, Jaenicke R (1977) FEBS Lett 73:247–250Google Scholar
  35. 35.
    Purr G (1989) Diplomarbeit, Univ Regensburg, GermanyGoogle Scholar
  36. 36.
    Weitzman PDJ, Danson MJ (1976) Curr Top Cell Regul 10:161–204Google Scholar
  37. 37.
    Yphantis DA (1964) Biochemistry 3: 297–317Google Scholar
  38. 38.
    Zipper P, Durchschlag H (1978) Z Naturforsch 33c:504–510Google Scholar
  39. 39.
    Durchschlag H, Jaenicke R (1983) Int J Biol Macromol 5:143–148Google Scholar
  40. 40.
    Durchschlag H (1986) In: Hinz H-J (ed) Thermodynamic Data for Biochemistry and Biotechnology. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, pp 45–128Google Scholar
  41. 41.
    Chervenka CH (1973) A Manual of Methods for the Analytical Ultracentrifuge. Spinco Division of Beckman Instruments, Palo AltoGoogle Scholar
  42. 42.
    Van Holde KE (1975) In: Neurath H, Hill RC (eds) The Proteins, Vol 1, 3rd ed. Academic Press, New York-San Francisco-London, pp 225–291Google Scholar
  43. 43.
    Harding SE, Rowe AJ, Horton JC, eds (1992) Analytical Ultracentrifugation in Biochemistry and Polymer Science. Royal Society of Chemistry, Cambridge UKGoogle Scholar
  44. 44.
    Jaenicke R (1964) In: Rauen HM (ed) Biochemisches Taschenbuch, II. Teil, 2nd ed. Springer-Verlag, Berlin-Göttingen-Heidelberg-New York, pp 746–767Google Scholar
  45. 45.
    Durchschlag H (1989) Colloid Polym Sci 267:1139–1150Google Scholar
  46. 46.
    Tanford C (1961) Physical Chemistry of Macromolecules, John Wiley & Sons, New York-London-SydneyGoogle Scholar
  47. 47.
    Cantor CR, Schimmel PR (1980) Biophysical Chemistry, Part II: Techniques for the Study of Biological Structure and Function. WH Freeman and Co, San Francisco, pp 555 and 586Google Scholar
  48. 48.
    Luzzati V, Witz J, Nicolaieff A (1961) J Mol Biol 3:367–378Google Scholar
  49. 49.
    Huber R (1987) Biochem Soc Transactions 15:1009–1020Google Scholar
  50. 50.
    Bennett WS, Huber R (1984) CRC Crit Rev Biochem 15:291–384Google Scholar
  51. 51.
    Durchschlag H, Zipper P (1994) Progr Colloid Polym Sci 94:20–39Google Scholar
  52. 52.
    Eisenberg H (1976) Biological Macromolecules and Polyelectrolytes in Solution. Clarendon Press, OxfordGoogle Scholar
  53. 53.
    Eisenberg H (1981) Q Rev Biophys 14:141–172Google Scholar
  54. 54.
    Durchschlag H, Jaenicke R (1982) Biochem Biophys Res Commun 108: 1074–1079Google Scholar
  55. 55.
    Schmid FX (1989) In: Creighton TE (ed) Protein structure, a practical approach. IRL Press at Oxford University Press, Oxford-New York-Tokyo, pp 251–285Google Scholar
  56. 56.
    Jaenicke R (1987) Prog Biophys Molec Biol 49:117–237Google Scholar
  57. 57.
    Jaenicke R, Rudolph R (1989) In: Creighton TE (ed) Protein structure, a practical approach. IRL Press at Oxford University Press, Oxford-New York-Tokyo, pp 191–223Google Scholar
  58. 58.
    Pace CN, Shirley BA, Thomson JA (1989) In: Creighton TE (ed) Protein structure, a practical approach. IRL Press at Oxford University Press, Oxford-New York-Tokyo, pp 311–330Google Scholar
  59. 59.
    Jaenicke R, Lehle K (1991) Progr Colloid Polym Sci 86:23–29Google Scholar
  60. 60.
    Creighton TE (1993) Proteins, Structures and Molecular Properties, 2nd ed WH Freeman and Co, New YorkGoogle Scholar
  61. 61.
    Bloxham DP, Parmelee DC, Kumar S, Wade RD, Ericsson LH, Neurath H, Walsh KA, Titani K (1981) Proc Natl Acad Sci USA 78:5381–5385Google Scholar
  62. 62.
    Wu J-Y, Yang JT (1970) J Biol Chem 245:212–218Google Scholar
  63. 63.
    Durchschlag H, Purr G, Jaenicke R, Zipper P (1993) Progr Colloid Polym Sci 93:222–223Google Scholar
  64. 64.
    Srere PA (1972) Curr Top Cell Regul 5:229–283Google Scholar
  65. 65.
    Weitzman PDJ (1989) In: Hervé G (ed) Allosteric Enzymes, CRC Press. Boca Raton, pp 175–188Google Scholar
  66. 66.
    Wiegand G, Remington SJ (1986) Ann Rev Biophys Biophys Chem 15:97–117Google Scholar
  67. 67.
    Beeckmans S (1984) Int J Biochem 16:341–351Google Scholar
  68. 68.
    Srere PA (1966) J Biol Chem 241: 2157–2165Google Scholar
  69. 69.
    Singh M, Brooks GC, Srere PA (1970) J Biol Chem 245:4636–4640Google Scholar
  70. 70.
    Kollmann-Koch A, Eggerer H (1989) Eur J Biochem 185:441–447Google Scholar
  71. 71.
    Bayer E, Bauer B, Eggerer H (1981) Eur J Biochem 120:155–160Google Scholar
  72. 72.
    Srere PA (1965) Arch Biochem Biophys 110:200–204Google Scholar
  73. 73.
    Johansson C-J, Pettersson G (1979) Eur J Biochem 93:505–513Google Scholar
  74. 74.
    Eggerer H, Klette A (1967) Eur J Biochem 1:447–475Google Scholar
  75. 75.
    Clark JD, O'Keefe SJ, Knowles JR (1988) Biochemistry 27:5961–5971Google Scholar
  76. 76.
    Durchschlag H, Zipper P (1981) Z Naturforsch 36c:516–533Google Scholar
  77. 77.
    Pessen H, Kumosinski TF (1989) Moth Enzymol 117:219–255Google Scholar
  78. 78.
    West SM, Kelly SM, Price NC (1990) Biochim Biophys Acta 1037:332–336Google Scholar
  79. 79.
    Durchschlag H, Zipper P (1985) Radiat Environ Biophys 24:99–111Google Scholar

Copyright information

© Steinkopff Verlag 1996

Authors and Affiliations

  • H. Durchschlag
    • 1
  • P. Zipper
    • 2
  • G. Purr
    • 1
  • R. Jaenicke
    • 1
  1. 1.Institute of Biophysics and Physical BiochemistryUniversity of RegensburgRegensburgGermany
  2. 2.Institute of Physical ChemistryUniversity of GrazGrazAustria

Personalised recommendations