Journal of comparative physiology

, Volume 109, Issue 1, pp 25–45 | Cite as

Short-range memory inTenebrio molitor larvae

  • R. Pierantoni
  • A. Dassori
  • C. Mariotti
Article

Summary

Mechanical and visual stimulation lasting for fractions of seconds to few seconds induce inTenebrio molitor at larval stage coordinate motor responses. Such movements are oscillatory in nature, their frequency is about 0.1 Hz and this value is largely independent from the intensity of the stimulus, their amplitude is proportional to it.

About 50s after the cessation of the stimulus the oscillations tend to fade away. During the oscillatory behaviour the thorax plays an active role in contrast with the more passive abdomen.

These motor responses can be elicited by different stimulation; visual and mechanical, only visual, only mechanical, and are still present in an experimental contest in which both light and mechanical stimuli are absent. The ability of the larva ofTenebrio to play a coordinate motor program lasting for a noticeable time enables it in maintaining a coherent exploratory strategy in total absence of visual and mechanical inputs.

The importance of such oscillatory responses has been analyzed in the general contest of the correcting behaviour. Its biological significance resides presumably in a deep “cooperation” between the central nervous system and the motor machinery in setting up a memory process or in recalling recent experiences.

Keywords

Active Role Larval Stage Recent Experience Biological Significance Motor Response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alloway, Th.: Effects of low temperature upon acquisition and retention of the grain beetle: Tenebrio molitor. J. comp. Physiol. Psychol.69, 1–8 (1969)Google Scholar
  2. Alloway, Th.: Methodological factors affecting the apparent effects to exposure to cold upon retention in the grain beetle: Tenebrio molitor. J. comp. Physiol. Psychol.72 No. 2, 311–317 (1970)Google Scholar
  3. Alloway, Th., Routtenberg, A.: “Reminiscence” in the cold flour beetle (Tenebrio molitor). Science158, 1066–1067 (1967)Google Scholar
  4. Akre, R.D.: Correcting behaviour by insects on vertical and horizontal mazes. J. Kansas Entomol. Soc.3, 169–186 (1964)Google Scholar
  5. Barnwell, F.H.: An angle sense in the orientation in a millipede. Biol. Bull.128, No. 1, 33–50 (1965)Google Scholar
  6. Borsellino, A., Pierantoni, R.: Comportamento del coleottero Tenebrio molitor durante un esperimento di apprendimento. Atti del Congresso Nazionale di Cibernetica, Casciana Terme (1971)Google Scholar
  7. Borsellino, A., Pierantoni, R., Cavazza, B.: Persistenza nello stato adulto di Tenebrio molitor, Tenebrionide, di comportamenti indotti allo stato larvale. Atti del Congresso Nazionale di Cibernetica 29–36, Pisa, Aprile 1967Google Scholar
  8. Borsellino, A., Pierantoni, R., Cavazza, B.: Survival in adult mealworm beetles (Tenebrio molitor) of learning acquired at the larval stage. Nature (Lond.)225, 963–964 (1970)Google Scholar
  9. Borsellino, A., Pierantoni, R., Cavazza, B.: Reply to comment on survival of learning acquired at the larval stage. Nature (Lond.)227, 1370 (1970)Google Scholar
  10. Burger, M.L.: Zum Mechanismus der Gegenwendung nach mechanisch aufgezwungener Richtungsänderung bei Schizophyllum sabulosum (Julidae, Diplopoda). Z. vergl. Physiol.71, 219–254 (1971)Google Scholar
  11. Cherkashin, A.N., Shejman, I.M., Stefekina, V.S.: O Sokraniegni j Vriemiennjk Szviaziej u Nasiekomjck V'Prozesse Metamorfosa. Academia Nauk URSS, Session of Physiology. J. Bioch. and Evol. Leningrad 1968Google Scholar
  12. Cloudsley-Thompson, J.L.: Studies in diurnal rhythms. IV Photoperiodism and geotaxis in Tenebrio molitor. Proc. roy. ent. Soc. (A)28, 10–12, 117–132 (1953)Google Scholar
  13. Cole, V.H.: Geotropism and muscle tension in Helix. J. gen. Physiol.8, 253–265 (1926)Google Scholar
  14. Collier, H.O.J.: Central nervous activity in the earthworm. 2. Properties of the tension reflex. J. exp. Biol.16, 178–194 (1939)Google Scholar
  15. Crozier, W.J.: Wave length of light and photic discrimination of stereotropism in Tenebrio larvae. J. gen. Physiol.6, 647–652 (1924)Google Scholar
  16. Crozier, W.J.: On stereotropism in Tenebrio larvae. J. gen. Physiol.7, 531–539 (1924)Google Scholar
  17. Crozier, W.J., Libby, R.: Temporary abolition of phototropism in Limax after feeding. J. gen. Physiol.7 No. 3, 421–429 (1925)Google Scholar
  18. Crozier, W.J., Moore, A.R.: Homostrophic reflex and stereotropism in Diplopods. J. gen. Physiol.5, 597–604 (1923)Google Scholar
  19. Dassori, A., Pierantoni, R.: Stochastic analysis of the orientation processes in an insect: Tenebrio molitor. Atti Congresso Nazionale di Cibernetica, Casciana Terma, 1972Google Scholar
  20. Deutsch, J.A.: Cold flour beetle: Reminiscence of changes of bias. Science160, 1023–1024 (1968)Google Scholar
  21. Dingle, H.: Correcting behaviour in mealworm (Tenebrio molitor) and the rejection of a previous hypothesis. Anim. Behav.12, 137–139 (1964)Google Scholar
  22. Dingle, H.: Turn alternations by bugs on causeways as a delayed compensatory response and the effect of varying visual inputs and length of straight path. Anim. Behav.13, 171–177 (1965)Google Scholar
  23. Grosslight, J.H., Harrison, P.C.: Variability of response in a determined turning sequence in the mealworm: An experimental test of alternative hypothesis. Anim. Behav.9, 100–103 (1961)Google Scholar
  24. Grosslight, J.H., Ticknor, W.: Variability and reactive inhibition in the mealworm as a function of determined turning sequence. J. comp. Physiol. Psychol.46, 35–38 (1953)Google Scholar
  25. Hartline, H.K.: Influence of light of very low intensity on phototropic reaction in animals. J. gen. Physiol.6, 136–152 (1924)Google Scholar
  26. Havas, L.: Action d'une boue radioactive sur l'orientation des larves de Tenebrio molitor L. Arb. Ung. Forsch. Inst.8, 74–81 (1935–1936)Google Scholar
  27. Hollis, J.H.: Habituatory responses decrement in pupae of Tenebrio molitor. Anim. Behav.11 (1), 161–163 (1963)Google Scholar
  28. Horn, E.: Gravity perception in the geotaxis of the walking beetle: Tenebrio molitor. Z. vergl. Physiol.66, 3, 343–355 (1970)Google Scholar
  29. Hughes, R.N.: Some observation on correcting behaviour in the woodlice (Porcellio scaber). Anim. Behav.14, 310 (1966)Google Scholar
  30. Josting, E.A.: Die Innervierung des Skeletmuskelsystems des MehlwurmsTenebrio molitor. Zool. Jb.67, 381–460 (1942)Google Scholar
  31. Kitching, R.: A simple simulation model of dispersal of animals among units of discrete habitat. Oecol.7, 95–116 (1971)Google Scholar
  32. Lester, D.: Response alternation: A review. J. Psychol.69, 131–142 (1968)Google Scholar
  33. Mittelstaedt-Burger, M.L.: Idiothetic course control and visual orientation. In: Information processing in the visual system of Arthropods (ed. R. Wehner), pp. 275–281. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  34. Moore, A.R.: The reaction ofNereis to unilateral tension of its musculature. J. gen. Physiol.5, 451–452 (1923a)Google Scholar
  35. Moore, A.R.: Muscle tension and reflexes in the earthworm. J. gen. Physiol.5, 327–333 (1923b)Google Scholar
  36. Murphy, R.M.: Sequential alternation behavior in the fruit flyDrosophila melanogaster. J. comp. Physiol. Psychol.60, 2169–2199 (1965)Google Scholar
  37. Perttunen, V., Lahermaa, M.: Reversal of negative phototaxis inTenebrio molitor. Ann. Ent. Fenn.24, 69–73 (1958)Google Scholar
  38. Pielou, D.D., Gunn: The humidity behaviour of the mealworm beetleTenebrio molitor. I. The reaction to difference in humidity. III. The mechanism of the reaction. J. exp. Biol.17, 286–295, 307–316 (1940)Google Scholar
  39. Schaller, F.: Observations on the visual reactions of Collembola. In: Information processing in the visual system of arthropods (ed. R. Wehner), pp. 249–255. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  40. Somberg, J.C., Happ, G.M., Schneider, A.M.: Retention of a conditioned avoidance response after the metamorphosis in mealworms. Nature (Lond.)228, 87–88 (1970)Google Scholar
  41. Tucolesco, J.: La dynamique de la larve deTenebrio molitor et la théorie des Tropismes. Bull. biol. France Belg.67, 480–514 (1933)Google Scholar
  42. Ullyott, P.: The behaviour ofDendrocoelum lacteum. Its responses at light-dark boundary. 2. Response in non directional gradients. J. exp. Biol.13, 253–264, 265–278 (1936)Google Scholar
  43. Von Borel du Vernay, W.: Assoziationsbildung und Sensibilisierung beiTenebrio molitor L. Z. vergl. Physiol.30, 84–116 (1942)Google Scholar
  44. Vowles, D.M.: The orientation in Ants. 1. The substitution of stimuli. J. exp. Biol.31, 341–355 (1954)Google Scholar
  45. Wehner, R., Flatt, I.: The visual orientation of desert ant,Cataglyphis bicolor, by means of terrestrial cues. In: Information processing in the visual system of arthropods (ed. R. Wehner), pp. 295–308. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  46. Wells, G.P.: Spontaneous activity cycles in polychaete worms. Symp. Soc. exp. Biol.4, 127–142 (1950)Google Scholar
  47. Wells, G.P., Albrecht, E.B.: The integration of activity cycles in the behavior of Arenicola. J. exp. Biol.28, 42–56 (1951)Google Scholar
  48. Wilkinson, D.H.: The random element in bird “Navigation”. J. exp. Biol.29, 532–560 (1952)Google Scholar
  49. Wolf, E., Crozier, W.J.: Orientation of compound fields of excitation: Photic adaptation in phototropism. J. gen. Physiol.11, 17–32 (1927)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • R. Pierantoni
    • 1
  • A. Dassori
    • 1
  • C. Mariotti
    • 1
  1. 1.Laboratorio di Cibernetica e Biofisica del CNRCamogliItaly

Personalised recommendations