Advertisement

Journal of inclusion phenomena

, Volume 2, Issue 1–2, pp 49–59 | Cite as

Molecular motion and phase transition in hydroquinone clathrate compounds

  • Takasuke Matsuo
  • Hiroshi Suga
Invited Contributions

Abstract

Distinction between the host-guest and guest-guest interaction in the roles they play in determining the physical properties of the clathrate compounds is discussed. It is shown that the latter causes cooperative effects and phase transitions. Experimental data on the phase transitions and molecular motion in the hydroquinone clathrate compounds are reviewed. Dipole interaction between the guest molecules is shown to have a correct magnitude of energy to explain the experimentally found transition temperatures. Possibility of quantum effects in the clathrate property is discussed in relation to the free rotation and ortho-para conversion of the hydrogen sulphide and other guest molecules.

Keywords

Hydrogen Experimental Data Sulphide Phase Transition Organic Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. H. van der Waals and J. C. Platteeuw,Advan. Chem. Phys.,2, 1 (1959).Google Scholar
  2. [2]
    N. G. Parsonage and L. A. K. Staveley,Disorder in Crystals, Oxford University Press, 1978.Google Scholar
  3. [3]
    V. E. Schneider, E. E. Tornau and A. A. Vlasova,Chem. Phys. Lett.,93, 188 (1982).Google Scholar
  4. [4]
    R. K. Wangsness,Electromagnetic Fields, p. 162, John Wiley and Sons, 1979.Google Scholar
  5. [5]
    H. Frölich,Theory of Dielectrics, p. 15, Oxford University Press, 1958.Google Scholar
  6. [6]
    S. I. Allen,J. Chem. Phys.,44, 394 (1965).Google Scholar
  7. [7]
    C. Barthel, X. Gerbaux and A. Hadni,Spectrochim. Acta,26A, 1183 (1969).Google Scholar
  8. [8]
    P. R. Davis,Disc. Faraday Soc.,48, 181 (1969).Google Scholar
  9. [9]
    J. E. D. Davies,J. Chem. Soc. 1972, 1182.Google Scholar
  10. [10]
    H. Ukegawa, T. Matsuo and H. Suga,Solid State Commun.,52, 203 (1984).Google Scholar
  11. [11]
    G. C. Roper,Diss. Abstr.,B27, 1444 (1966).Google Scholar
  12. [12]
    J. C. Boeyens and J. A. Pretorius,Acta Crystallogr.,B33, 2120 (1977).Google Scholar
  13. [13]
    H. Ukegawa, T. Matsuo and H. Suga, submitted toJ. Inclusion Phenomena.Google Scholar
  14. [14]
    T. Matsuo,J. Phys. Soc. Jpn. 30, 794 (1970).Google Scholar
  15. [15]
    J. A. Ripmeester, R. E. Hawkins and D. W. Davidson,J. Chem. Phys.,71, 1889 (1979).Google Scholar
  16. [16]
    T. C. W. Mak,J. Chem. Soc. Perkin Trans. II,1982, 1435.Google Scholar
  17. [17]
    T. Matsuo, H. Suga and S. Seki,J. Phys. Soc. Jpn.,30, 785 (1970).Google Scholar
  18. [18]
    J. S. Dryden,Trans. Faraday Soc.,49, 1333 (1953).Google Scholar
  19. [19]
    P. S. Sixou and P. Dansas,Ber. Bunsen Ges. Phys. Chem.,80, 364 (1976).Google Scholar
  20. [20]
    T. C. W. Mak and K. S. Lee,Acta Crystallogr.,B34, 3631 (1978).Google Scholar
  21. [21]
    J. R. Peverley and P. H. E. Meijer,Phys. Status Solidi,23, 353 (1967).Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • Takasuke Matsuo
    • 1
  • Hiroshi Suga
    • 1
  1. 1.Department of Chemistry and Chemical Thermodynamics Laboratory Faculty of ScienceOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations