Oxidation of Metals

, Volume 36, Issue 3–4, pp 265–280 | Cite as

Oxidation protection of mild steel by coatings made with aluminum alkyls

  • A. L. Cabrera
  • J. E. Zehner
  • J. N. Armor


The deposition of Al on 1010 steel from mixtures of trimethyl (TMA) and triethyl (TEA) aluminum alkyls in argon and hydrogen was studied. Unlike earlier work with SiH4/H2 no aluminum diffusion onto the steel was observed even when the samples were heated to 800°C. Coatings obtained with TEA at temperatures between 300–400°C resulted in overlays of elemental Al or Al oxide after exposure to ambient conditions. No deposition was obtained at temperatures higher than 400°C in a hot-wall reactor due to rapid decomposi tion of TEA on the walls of the reactor. Deposition with TMA at temperatures between 400–800°C resulted in overlays of Al carbide. For deposition at tem peratures higher than 500°C, a cold-wall reactor was used. The Al overlay coatings resulting from TMA were dense, homogeneous, and adhered well to the steel. Both kinds of coatings provided oxidation protection to the steel in air at 800°C. The performance of the coatings produced with TMA was superior to the coatings produced with TEA and similar to the performance of an Alonized steel.

Key words

mild steel protection aluminum alkyls aluminizing oxidation microbalance deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Cabrera, J. F. Kirner, R. A. Miller, and R. Pierantozzi, U.S. Patent 4,714,632 (1987).Google Scholar
  2. 2.
    A. L. Cabrera, J. F. Kirner, R. A. Miller, R. Pierantozzi, and J. N. Armor, U.S. Patent 4,822,642 (1989).Google Scholar
  3. 3.
    A. L. Cabrera and J. F. Kirner,Surf. Coat. Technol. 39/40, 43 (1989).Google Scholar
  4. 4.
    A. L. Cabrera, J. F. Kirner, and R. Pierantozzi,J. Mater. Res. 5, 74 (1990).Google Scholar
  5. 5.
    N. V. Bangaru and R. C. Krutenat,J. Vac. Sci. Technol. B2(4), 806 (1984).Google Scholar
  6. 6.
    W. A. McGill and M. J. Weinbaum,Proceedings API (Refining 40th Midyear Meeting, 1975, Chicago, Illinois).Google Scholar
  7. 7.
    L. F. Albright and W. A. McGill,Oil & Gas Journal,85, 46 (1987).Google Scholar
  8. 8.
    K. Ziegler, GB Patent 788,619 (1958).Google Scholar
  9. 9.
    W. M. MacNevin, U.S. Patent 2,867,546 (1959).Google Scholar
  10. 10.
    J. C. Withers, inChemical Vapor Deposition: Second International Conference, J. M. Blocher and J. C. Whiters, eds. (1970), Vol. 1, p. 393.Google Scholar
  11. 11.
    H. O. Pierson,Thin Solid Films 45, 257 (1977).Google Scholar
  12. 12.
    A. Malazgirt and J. W. Evans,Metal. Trans. B 11B, 225 (1980).Google Scholar
  13. 13.
    D. Fatu, M. Mascalu, and C. E. Morosanu,Mater. Chem. 5, 19 (1980).Google Scholar
  14. 14.
    M. J. Cooke, R. A. Heinecke, and R. C. Stern,Solid State Technol. 62 (1982).Google Scholar
  15. 15.
    M. Green, R. A. Levy, R. G. Nuzzo, and E. Coleman,Thin Solid Films 114, 367 (1984).Google Scholar
  16. 16.
    A. L. Cabrera,J. Vac. Sci. Technol. A 8(4), 3229 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. L. Cabrera
    • 2
  • J. E. Zehner
    • 1
  • J. N. Armor
    • 1
  1. 1.Corporate Science and Technology CenterAir Products and Chemicals, Inc.Allentown
  2. 2.Facultad de FisicaPontificia Universidad Catolica de ChileSantiago 22Chile

Personalised recommendations