Skip to main content

Phytoplankton and bacterioplankton stress by sediment-borne pollutants

Abstract

The effect of sediment-borne and released chemicals on the phytoplankton and bacterioplankton communities of a clay-turbid and shallow lake was examined. Water and sediments from the lake were collected at two sites. One site near the source of pollution input (Eastern Region) and the second site 40 km from the pollution input (Central Region). The Elutriate Test was used to find the impact of sediment-borne substances. Elutriation of the water for the bioassays was done under aerobic and anaerobic conditions. Two sources of phytoplankton and bacterioplankton were used. One was the native organisms for each sampling site, the other was from the opposite sampling site. The phytoplankton bioassays showed inhibition of growth with increasing concentration of sediments regardless of source of sediments or phytoplankton. The bacterial bioassays showed, in most cases, stimulation of14C-glucose uptake with the addition of sediments. Bacteria from the more polluted region when grown in less polluted region elutriate did not show any significant change in glucose uptake. When less polluted region bacteria were grown in more polluted region elutriate they showed a highly significant stimulation in uptake.

This is a preview of subscription content, access via your institution.

References

  • Baudo, R. & H. Muntau, 1990. Lesser known in-place pollutants and diffuse source problems. In: R. Baudo, J. Giesy & H. Muntau (eds),Sediments: Chemistry and toxicity of in-place pollutants. Lewis Publishers, Inc., 405 pp.

  • Daniels, S. A., M. Munawar & C. I. Mayfield, 1989. An improved elutriation technique for the bioassessment of sediment contaminants. Hydrobiologia 188/189: 619–631.

    Google Scholar 

  • Dávalos, L., O. T. Lind & R. D. Doyle, 1989. Evaluation of phytoplankton-limiting factors in Lake Chapala, México: Turbidity and the spatial and temporal variation in algal assay response. Lake and Reservoir Management 5: 99–104.

    Google Scholar 

  • Ford, T. & D. K. Ryan, 1992. Year 1, Final Report to the State of Jalisco Evaluation of Heavy Metals in Water, Sediment and Organisms in Lake Chapala. Division of Applied Sciences, Harvard University. Cambridge Massachusetts, 38 pp.

    Google Scholar 

  • Gregor, D. J. & M. Munawar, 1989. Assessing toxicity of Lake Diefenbaker (Saskatchewan, Canada) sediments using algal and nematode bioassays Hydrobiologia 188/189 (Dev. Hydrobiol. 54): 291–300.

    Google Scholar 

  • Hutchnison, G., 1957.A Treatise on Limnology. Vol. 1. Wiley, New York.

    Google Scholar 

  • Limón, J. G. & O. T. Lind, 1990. The management of Lake Chapala (México): Considerations after significant changes in the water regime. Lake and Reservoir Management 6: 61–70.

    Google Scholar 

  • Limón, J. G., O. T. Lind, D. S. Vodopich, R. Doyle & B. G. Trotter, 1989. Long-and short-term variation in the physical and chemical limnology of a large, shallow, turbid tropical lake (Lake Chapala, Mexico). Arch Hydorbiol./Suppl. 83: 57–81.

    Google Scholar 

  • Lind, O. T. & L. Dávalos-Lind, 1991. Association of turbidity and organic carbon with bacterial abundance and cell size in a large, turbid tropical lake. Limnol. Oceanogr. 36: 1200–1208.

    Google Scholar 

  • Lind, O. T., L. O. Dávalos-Lind, T. H. Chrzanowski & J. G. Limón, 1994. Inorganic turbidity and the failure of fishery models. Int. Revue ges. Hydrobiol. 79: 7–16.

    Google Scholar 

  • Lind, O. T., R. Doyle, D. S. Vodopich, B. T. Trotter, J. G. Limón & L. Dávalos-Lind, 1992. Clay turbidity: Regulation of phytoplankton production in a large, nutrient-rich tropical lake. Limnol. Oceanogr. 37: 549–565.

    Google Scholar 

  • Moll, R. A. & P. J. Mansfield, 1991. Response of bacteria and phytoplankton to contaminated sediments from Trenton Channel, Detroit River, Hydrobiologia 219: 281–299.

    Google Scholar 

  • Munawar, M., I. F. Munawar, T. Weisse, G. G. Leppard & M. Legner, 1994. The significance and future potential of using microbes for assessing ecosystem health: The Great Lakes example. Journal of Aquatic Ecosystem Health 3: 295–310.

    Google Scholar 

  • Munawar, M., A. Mudroch, I. F. Munawar & R. L. Thomas, 1983. The impact of sediment-associated contaminants from the Niagara River mouth on various size assemblages of phytoplankton. J. Great Lakes Res. 9(2): 303–313.

    Google Scholar 

  • Parsons, T. T., Y. Maita & C. M. Lalli, 1984.A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York, 173 pp.

    Google Scholar 

  • Sloterdijk, H., L. Champoux, V. Jarry, Y. Couillard & P. Ross, 1989. Bioassay responses of micro-organisms to sediment elutriates from the St. Lawrence River (Lake St. Louis). Hydrobiologia 188/189 (Dev. Hydrobiol. 54): 317–335.

    Google Scholar 

  • Trevors, J. T., 1989. The role of microbial metal resistance and detoxification mechanisms in environmental bioassay research. Hydrobiologia 188/189 (Dev. Hydrobiol. 54): 143–147.

    Google Scholar 

  • U.S. Environmental Protection Agency, 1978. TheSelenastrum capricornutum Printz algal assay bottle test: Experimental design, application, and data interpretation protocol. EPA-600/9-78-018. Corvallis Environ. Res. Lab. Corvallis, OR.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dávalos-Lind, L. Phytoplankton and bacterioplankton stress by sediment-borne pollutants. Journal of Aquatic Ecosystem Health 5, 99–105 (1996). https://doi.org/10.1007/BF00662798

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00662798

Key words

  • sediment-borne nutrients
  • sediment-borne toxicants
  • elutriate test
  • bacterioplankton
  • phytoplankton