Astrophysics and Space Science

, Volume 96, Issue 1, pp 95–105 | Cite as

An anisotropic cosmological model in Brans-Dicke theory

  • T. Singh
  • L. N. Rai
  • Tarkeshwar Singh


Solutions of Brans-Dicke field equations are obtained when the source of the gravitational field is a perfect fluid with pressure equal to energy density and the metric is cylindrically symmetric of Marder-type. Various physical and geometrical properties of the model have been discussed. Finally the solutions have been transformed to the original form of Brans-Dicke (1961) theory and then through unit transformation to a general form.


Energy Density Field Equation Geometrical Property Gravitational Field Cosmological Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, R. C. and Prondzinski, R.: (1972),Astrophys. Space Sci. 18, 34.Google Scholar
  2. Barrow, J. D.: 1978,Nature 272, 211.Google Scholar
  3. Bludman, S. A. and Ruderman, M. A.: 1970,Phys. Rev. D 1, 3244.Google Scholar
  4. Brans, C. H. and Dicke, R. H.: 1961,Phys. Rev. 124, 925.Google Scholar
  5. Dehnen, H. and Obregon, O.: 1971,Astrophys. Space Sci. 14, 454.Google Scholar
  6. Dicke, R. H.: 1962,Phys. Rev. 125, 2163.Google Scholar
  7. Hawking, S. W. and Penrose, R.: 1970,Proc. Roy. Soc. London A 314, 529.Google Scholar
  8. Hill, H. A. et al.: 1974,Phys. Rev. Letters 33, 1497.Google Scholar
  9. Johri, V. B. and Goswami, G. K.: 1980,J. Math. Phys. 21, 2269.Google Scholar
  10. Morganstern, R. E.: 1971,Phys. Rev. D 3, 2946.Google Scholar
  11. Morganstern, R. E.: 1973,Phys. Rev. D 7, 1570.Google Scholar
  12. Roy, S. R. and Prakash, S.: 1976,J. Phys. A 9, 261.Google Scholar
  13. Roy, S. R. and Singh, P. N.: 1976,J. Phys. A 9, 265.Google Scholar
  14. Ruban, V. A.: 1977,Astrophys. Space Sci. 46, 123.Google Scholar
  15. Ruban, V. A. and Finkelstein, A. M.: 1973, Academy of Sciences of the U.S.S.R., Leningrad Nuclear Institute, Leningrad, Report No. 59.Google Scholar
  16. Shapiro, I. I. et al.: 1971,Phys. Rev. Letters 26, 27.Google Scholar
  17. Smalley, L. L. and Eby, P. B.: 1976,Nuovo Cimento 358, 54.Google Scholar
  18. Van Flandern, T. C.: 1975,Monthly Notices Roy. Astron. Soc. 170, 333.Google Scholar
  19. Walecka, J. D.: 1974,Ann. Phys. 83, 491.Google Scholar
  20. Zel'dovich, Ya. B.: 1961,Zh. Eksp. Fiz. 41, 1009.Google Scholar
  21. Zel'dovich, Ya. B. and Novikov, I. D.: 1971,Relativistic Astrophysics, The University of Chicago Press, Chicago, Vol. 1.Google Scholar

Copyright information

© D. Reidel Publishing Company 1983

Authors and Affiliations

  • T. Singh
    • 1
  • L. N. Rai
    • 1
  • Tarkeshwar Singh
    • 1
  1. 1.Applied Mathematics Section, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations