Astrophysics and Space Science

, Volume 69, Issue 2, pp 425–438 | Cite as

The effect of interplanetary acceleration on the propagation of energetic solar particles in prompt events

  • S. Cecchini
  • X. Moussas
  • J. J. Quenby
Article

Abstract

Crank-Nicholson solutions are obtained to the time-dependent Fokker-Planck equation for propagation in the interplanetary medium following a point in time injection of energetic solar particles and including the acceleration terms
$$\frac{\partial }{{\partial T}}\left( {D_{TT} \frac{{\partial U}}{{\partial T}}} \right) - \frac{\partial }{{\partial T}}\left( {\frac{{D_{TT} U}}{{2T}}} \right)$$
. The diffusion coefficient in kinetic energyDTT is allowed to be either independent of radial distance,R(AU), or follow the lawDTT=D0T2R 0 2 /(A2+R2) in either case with the 1 AU value ofDTT at 10 MeV ranging between 10−4 (MeV)2 s−1 and zero. The spatial diffusion mean free path at the Earth's orbit is fixed at λ AU at 10 MeV according to numerical estimates made by Moussas and Quenby. However, a variety ofR dependences are allowed. Reasonable agreement with experimental data out to 4 AU is obtained with the above values ofDTT and the spatial diffusion coefficientKr=K0R−2 forR«1 andKr=K0R0.4 forR»1 AU. It is only in the decay phases of prompt events as seen at 2–4 AU that significant differences in the temporal behaviour of the events can be distinguished, depending on the value ofDTT chosen within the above range. Experimental determination of the decay constant is difficult.

Keywords

Diffusion Coefficient Free Path Reasonable Agreement Numerical Estimate Radial Distance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behannon, K. W.: 1978,Rev. Geophys. Space Phys. 16, 125.Google Scholar
  2. Fermi, E.: 1949,Phys. Rev. 75, 1169.Google Scholar
  3. Fisk, L. A.: 1971,J. Geophys. Res. 76, 1662.Google Scholar
  4. Fisk, L. A.: 1976a,J. Geophys. Res. 81, 4641.Google Scholar
  5. Fisk, L. A.: 1976b,J. Geophys. Res. 81, 4633.Google Scholar
  6. Forman, M. A.: 1971,Proc. 12th Int. Cosmic Ray Conf., Hobart, Tasmania 2, 511.Google Scholar
  7. Hamilton, D. C.: 1977,J. Geophys. Res. 82, 2157.Google Scholar
  8. Hsieh, K. C. and Richter, A. K.: 1979,Proc. 16th Int. Cosmic Ray Conf., Kyoto Paper MG1-6.Google Scholar
  9. Jokipii, J. R.: 1971,Phys. Rev. Letters 26, 666.Google Scholar
  10. Jones, F. C., Kaiser, T. B. and Birmingham, T. J.: 1973,Proc. 13th Int. Cosmic Ray Conf., Denver 2, 669.Google Scholar
  11. Kaiser, T. B., Jones, F. C. and Birmingham, T. J.: 1978,Phys. Fluids 21, 361.Google Scholar
  12. McCarthy, J. and O'Gallagher, J. J.: 1976,Geophys. Res. Letters 3, 53.Google Scholar
  13. McCracken, K. G., Rao, U. R., Bukata, R. P. and Keath, E. P.: 1971,Solar Phys. 18, 100.Google Scholar
  14. McDonald, F. B., Teegarden, B. J., Trainor, J. H. and Webber, W. R.: 1975,Astrophys. J. 203, L149.Google Scholar
  15. Morfill, G., Völk, H. J. and Lee, M.: 1976,J. Geophys. Res. 81, 5481.Google Scholar
  16. Morfill, G., Völk, H. J. and Lee, M.: 1976,J. Geophys. Res. 81, 5481.Google Scholar
  17. Morfill, G., Richter, A. K. and Scholer, M.: 1979,J. Geophys. Res. 84, 1505.Google Scholar
  18. Moussas, X., Webb, S. and Quenby, J. J.: 1975,Proc. 14th Int. Cosmic Ray Conf., Munich 3, 866.Google Scholar
  19. Moussas, X. and Quenby, J. J.: 1978,Astrophys.Space Sci. 58, 483.Google Scholar
  20. Moussas, X. and Quenby, J. J.: 1979 (in preparation).Google Scholar
  21. Murray, S. S., Stone, E. C. and Vogt, R. E.: 1971,Phys. Rev. Letters 26, 663.Google Scholar
  22. Ng, C. K. and Gleeson, L. J.: 1971,Solar Phys. 20, 166.Google Scholar
  23. Ng, C. K. and Gleeson, L. J.: 1975,Solar Phys. 43, 475.Google Scholar
  24. Quenby, J. J. and Sear, J. F.: 1971,Planet. Space Sci. 25, 471.Google Scholar
  25. Sari, J. W.: 1977, Goddard Space Flight Center Report X-692-77-170 andEOS.Trans. AGU 58, 487.Google Scholar
  26. Skadron, G. and Hollweg, J. V.: 1976,J. Geophys. Res. 81, 5887.Google Scholar
  27. Smith, E. J.: 1974, in C. T. Russell (ed.),Solar Wind Three, Inst. of Geophys. and Plas. Phys., University of California, Los Angeles, p. 257.Google Scholar
  28. Tverskoy, B. A.: 1967,Zh. Eksp. Teo. Fiz. 53, 1417;JETP 26, 821.Google Scholar
  29. Van Allen, J. A. and Ness, N. F.: 1967,J. Geophys. Res. 72, 935.Google Scholar
  30. Webb, S. and Quenby, J. J.: 1973,Planet. Space Sci. 21, 23.Google Scholar
  31. Wibberenz, G., Hasselmann, K. and Hasselmann, D.: 1970,Acta Phys. Hung. 29 (Suppl. 2), 37.Google Scholar
  32. Wibberenz, G. and Beuermann, K. P.: 1972, inCosmic Plasma Physics, Plenum Press, New York, p. 339.Google Scholar
  33. Zwickl, R. D. and Webber, W. R.: 1977,Solar Phys. 54, 457.Google Scholar

Copyright information

© D. Reidel Publishing Co. 1980

Authors and Affiliations

  • S. Cecchini
    • 1
  • X. Moussas
    • 2
  • J. J. Quenby
    • 3
  1. 1.Laboratorio TESRE/CNRBolognaItaly
  2. 2.Astrophysics LaboratoryUniversity of Athens, PanepistimiopolisAthensGreece
  3. 3.Blackett LaboratoryImperial CollegeLondonEngland

Personalised recommendations