Advertisement

Journal of Low Temperature Physics

, Volume 29, Issue 5–6, pp 411–429 | Cite as

Kondo effect and impurity interactions in the resistivity of diluteZnMn alloys

  • J. Kästner
  • E. F. Wassermann
Article

Abstract

The electrical resistivity of diluteZnMn alloys (c=1.7–2400 ppm Mn) has been investigated in the temperature range from 0.05 to 14 K. For the most dilute sample, single-impurity Kondo behavior is found, well described by the Hamann formula withTK=0.9 K,S=3/2. ForT<50 mK, aT2 law with θ R =0.3 K is expected. In the dilute limit the Kondo slope is −(1/c)d(Δρ)/d(logT)=3.7±0.2 µΩ-cm/at % dec. In the more highly concentrated alloys, the slope decreases with increasing c and the lnT-like variation of the Kondo resistivity roughly terminates near a temperatureTW(c),TW being related to the average Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction strength between the Mn impurities. For 20 ppm ≤c ≤ 1000 ppm, the resistivity slightly decreases at low temperatures and a broad resistivity maximum is observed atTm(c), withTmc0.7. ForT 2<Tm, the resistivity dependence is linear inT, and for the most concentrated alloy aT3/2 orT2 dependence is measured at the lowest temperatures attainable. The investigation of the transition temperatureTc(c) to superconductivity ofZnMn results in a critical concentrationccr=18 ppm Mn. The concentration dependence ofTc below 0.3 K suggests the presence of the Kondo effect, although impurity interactions may also influenceTc in this temperature range.

Keywords

Electrical Resistivity Magnetic Material Concentration Dependence Interaction Strength Concentrate Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kondo,Solid State Phys. 23, 183 (1969); K. Fischer,Springer Tracts in Modern Physics, No. 54 (1970), p. 1;Phys. Stat. Sol. (b)46, 11 (1971).Google Scholar
  2. 2.
    C. Rizzuto,Rep. Prog. Phys. 37, 147 (1974).Google Scholar
  3. 3.
    R. S. Newrock, B. Serin, V. Vig, and G. Boato,J. Low Temp. Phys. 5, 701 (1971).Google Scholar
  4. 4.
    P. J. Ford, C. Rizzuto, E. Salamoni, and P. Zani,J. Phys. 32,Suppl. C1, 221 (1971); P. J. Ford, C. Rizzuto, and E. Salamoni,Phys. Rev. B 6, 1851 (1972).Google Scholar
  5. 5.
    H. P. Falke, H. P. Jablonski, and E. F. Wassermann,Z. Physik 269, 285 (1974).Google Scholar
  6. 6.
    D. R. Hamann,Phys. Rev. 158, 570 (1967).Google Scholar
  7. 7.
    K. Fischer,Phys. Rev. 158, 613 (1967);J. Phys. Chem. Solids 29, 1227 (1968).Google Scholar
  8. 8.
    A. Pilot, R. Vaccarone, and C. Rizzuto,Phys. Lett. A 40, 405 (1972).Google Scholar
  9. 9.
    P. L. Li, F. T. Hedgcock, W. B. Muir, and J. O. Ström-Olsen,Phys. Rev. Lett. 31, 29 (1973).Google Scholar
  10. 10.
    F. W. Smith,Phys. Rev. B 10, 2034 (1974).Google Scholar
  11. 11.
    M. A. Ruderman and C. Kittel,Phys. Rev. 96, 99 (1954); T. Kasuya,Prog. Theor. Phys. 16, 445 (1956); K. Yosida,Phys. Rev. 106, 893 (1957).Google Scholar
  12. 12.
    R. J. Harrison and M. W. Klein,Phys. Rev. 154, 540 (1967).Google Scholar
  13. 13.
    I. Riess and A. Ron,Phys. Rev. B 4, 4099 (1971).Google Scholar
  14. 14.
    K. Matho and M. T. Béal-Monod,Phys. Rev. B 5, 1899 (1972).Google Scholar
  15. 15.
    O. Laborde and P. Radhakrishna,Solid State Comm. 9, 701 (1971).Google Scholar
  16. 16.
    J. W. Loram, T. E. Whall, and P. J. Ford,Phys. Rev. B 2, 857 (1970).Google Scholar
  17. 17.
    W. M. Star,Phys. Lett. A 26, 502 (1969).Google Scholar
  18. 18.
    U. Larsen,Phys. Rev. B 14, 4356 (1976).Google Scholar
  19. 19.
    M. D. Daybell and W. A. Steyert,Phys. Rev. Lett. 20, 195 (1968).Google Scholar
  20. 20.
    M. D. Daybell and Y. K. Yeo, preprint (1972), unpublished.Google Scholar
  21. 21.
    E. Müller-Hartmann, B. Schuh, and J. Zittartz,Solid State Comm. 19, 439 (1976).Google Scholar
  22. 22.
    E. F. Wassermann,Z. Physik 234, 347 (1970).Google Scholar
  23. 23.
    H. Falke, Thesis, RWTH Aachen (1973).Google Scholar
  24. 24.
    P. L. Li, Thesis, McGill University, Montreal (1973).Google Scholar
  25. 25.
    F. T. Hedgcock and W. B. Muir,Phys. Rev. 129, 2045 (1963).Google Scholar
  26. 26.
    R. S. Seth and S. B. Woods,Phys. Rev. B 2, 2961 (1970).Google Scholar
  27. 27.
    H. Pajewski, Diplomwork, RWTH Aachen (1973).Google Scholar
  28. 28.
    A. E. Bell and A. D. Caplin,J. Phys. F, Metal Phys. 5, 143 (1975).Google Scholar
  29. 29.
    P. J. Ford and J. A. Mydosh,Phys. Rev. B 14, 2057 (1976).Google Scholar
  30. 30.
    J. Kästner, K. Matho, J. L. Tholence, and E. F. Wassermann, to be published.Google Scholar
  31. 31.
    W. Schlabitz, E. F. Wassermann, and H. P. Falke,J. Low Temp. Phys. 10, 583 (1973).Google Scholar
  32. 32.
    W. M. Star, Thesis, University of Leiden (1971).Google Scholar
  33. 33.
    G. Grüner,Adv. Phys. 23, 941 (1974).Google Scholar
  34. 34.
    M. D. Daybell, inMagnetism, Vol. V, H. Suhl, ed. (Academic Press, New York, 1973), p. 121.Google Scholar
  35. 35.
    U. Larsen,Phys. Lett. A 40, 39 (1972).Google Scholar
  36. 36.
    R. Harris, F. T. Hedgcock, J. O. Ström-Olsen, and M. J. Zuckermann,Can. J. Phys. 52, 1765 (1974).Google Scholar
  37. 37.
    J. Kästner, E. F. Wassermann, F. T. Hedgcock, and J. O. Ström-Olsen,AIP Conf. Proc. 24, 449 (1975).Google Scholar
  38. 38.
    F. T. Hedgcock, S. Lenis, P. L. Li, J. O. Ström-Olsen, and E. F. Wassermann,Can. J. Phys. 52, 1759 (1974).Google Scholar
  39. 39.
    B. Cornut and B. Coqblin,Phys. Rev. B 5, 4541 (1972).Google Scholar
  40. 40.
    J. C. Doran, S. F. Kral, T. Steelhammer, and O. G. Symko,Solid State Comm. 17, 1099 (1975).Google Scholar
  41. 41.
    J. M. Dixon and R. Dupree,Solid State Comm. 16, 1301 (1975).Google Scholar
  42. 42.
    D. A. Smith,J. Magnetism Magn. Mat. 1, 214 (1976).Google Scholar
  43. 43.
    H. Suhl,Phys. Rev. Lett. 20, 656 (1968).Google Scholar
  44. 44.
    U. Larsen,Solid State. Comm. (1977), to appear.Google Scholar
  45. 45.
    P. J. Ford, T. E. Whall, and J. W. Loram,Phys. Rev. B 2, 1547 (1970).Google Scholar
  46. 46.
    J. L. Tholence and R. Tournier,Phys. Rev. Lett. 25, 867 (1970).Google Scholar
  47. 47.
    E. Babić and G. Grüner,Physica B 84, 37 (1976).Google Scholar
  48. 48.
    J. Souletie and R. Tournier,J. Phys. 32,Suppl. C,1, 172 (1971).Google Scholar
  49. 49.
    G. Stroink, Thesis, McGill University, Montreal (1973).Google Scholar
  50. 50.
    F. T. Hedgcock and C. Rizzuto,Phys. Rev. 163, 517 (1967).Google Scholar
  51. 51.
    D. L. Martin,Phys. Rev. 167, 640 (1968).Google Scholar
  52. 52.
    Y. J. Tsay and M. W. Klein,Phys. Rev. B 7, 352 (1973);Phys. Rev. B 11, 318 (1975).Google Scholar
  53. 53.
    D. H. Sanchez,J. Low Temp Phys. 17, 101 (1974).Google Scholar
  54. 54.
    F. W. Smith,J. Low Temp. Phys. 5, 683 (1971).Google Scholar
  55. 55.
    R. Vaccarone, A. Morozzo della Rocco, A. Pilot, F. Vivaldi, and C. Rizzuto,Solid State Comm. 12, 885 (1973).Google Scholar
  56. 56.
    A. A. Abrikosov and L. P. Gorkov,Zh. Eksp. Teor. Fiz. 39, 1781 (1960) [Sov. Phys.—JETP 12, 1243 (1961)].Google Scholar
  57. 57.
    E. Müller-Hartmann and J. Zittartz,Z. Physik 234, 58 (1970);Phys. Rev. Lett. 26, 428 (1971).Google Scholar
  58. 58.
    R. Harris, B. G. Mulimani, and J. O. Ström-Olsen,J. Phys. F, Metal Phys. 5, 1910 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • J. Kästner
    • 1
    • 2
  • E. F. Wassermann
    • 1
    • 2
  1. 1.SonderforschungsbereichAachen-Jülich-KölnGermany
  2. 2.Physikalisches Institut der RWTH AachenAachenGermany

Personalised recommendations