Skip to main content
Log in

Dissipation by pinned vortex lines in the superfluid helium film

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The status of theoretical and experimental work on dissipation in the helium film is reviewed, and it is concluded that there does not yet exist a satisfactory theoretical interpretation of dissipation in the film which can account for the complete range of observed phenomena below the superfluid transition temperature Tλ. Although the most recent theory, which accounts for dissipation in terms of intrinsic fluctuations in the flow, has been successful in a temperature interval just below Tλ, attempts to extend the theory to include all temperatures below Tλ have not met with the same degree of success. A new model is proposed which accounts for dissipation in superfluid helium film transport in terms of the continuous generation of pinned vortex lines. In principle, this model is similar to one advanced by Vinen, involving the growth and decay of a tangled array of vortex lines. Qualitatively, it is shown that the present mechanism can account for many of the phenomena observed in helium film transport experiments at temperatures well below the λ transition. For example, sharp changes in the flow rate are associated with changes in the number of pinned vortex lines. In addition, the theory predicts that at superfluid stream velocitiesv sthat just barely exceed the critical velocityv c0for the appearance of dissipation, the rate of dissipation Q is given by Q=AN(vs−vc0)3/2 whereN is the number of pinned vortex lines, andA is a constant determined by the vortex line parameters. The value of 3/2 for the exponent is a clear prediction of the theory, and it represents the first precise, numerical prediction by any theory of a physical quantity which is associated with dissipation in the helium film, and which can be measured experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. C. Jackson and L. G. Grimes,Phil. Mag. Suppl. 7, 435 (1958), and references cited therein.

    Google Scholar 

  2. B. Smith and H. A. Boorse,Phys. Rev. 98, 328 (1955).

    Google Scholar 

  3. B. Smith and H. A. Boorse,Phys. Rev. 99, 346 (1955).

    Google Scholar 

  4. B. Smith and H. A. Boorse,Phys. Rev. 99, 358 (1955).

    Google Scholar 

  5. B. Smith and H. A. Boorse,Phys. Rev. 99, 367 (1955).

    Google Scholar 

  6. K. Mendelssohn and G. K. White,Proc. Phys. Soc., Lond. A 63, 1328 (1950).

    Google Scholar 

  7. H. A. Snyder and R. J. Donnelly,Phys. Fluids 2, 408 (1959).

    Google Scholar 

  8. R. W. Selden, D. A. Neeper, and J. R. Dillinger, inProceedings of the Seventh International Conference on Low Temperature Physics, G. M. Graham and A. C. Hollis Hallett, eds. (University of Toronto Press, Toronto, 1961), p. 525.

    Google Scholar 

  9. C. F. Mate, R. F. Harris-Lowe, and J. G. Daunt, inProceedings of the Ninth International Conference on Low Temperature Physics, J. G. Daunt, D. O. Edwards, F. J. Milford, and M. Yaqub, eds. (Plenum Press, New York. 1965), p. 206.

    Google Scholar 

  10. R. W. Selden, J. H. Werntz, P. J. Fleming, and J. R. Dillinger,Phys. Rev. 138A, 1363 (1965).

    Google Scholar 

  11. C. F. Mate, R. F. Harris-Lowe, and K. L. McCloud, inSuperfluid Helium, J. F. Allen, ed. (Academic Press, London, 1966), p. 279.

    Google Scholar 

  12. R. F. Harris-Lowe, C. F. Mate, K. L. McCloud, and J. G. Daunt,Phys. Lett. 20, 126, (1966).

    Google Scholar 

  13. J. F. Allen and J. G. M. Armitage,Phys. Lett. 22, 121 (1966).

    Google Scholar 

  14. R. R. Turkington and M. H. Edwards,Phys. Rev. 168, 160 (1968).

    Google Scholar 

  15. R. F. Harris-Lowe and R. R. Turkington,J. Low. Temp. Phys. 4, 525 (1971).

    Google Scholar 

  16. R. R. Turkington and R. F. Harris-Lowe,J. Low. Temp. Phys. 10, 369 (1973).

    Google Scholar 

  17. R. F. Harris-Lowe and R. R. Turkington, inLow Temperature Physics—LT 13 (Proc. 13th Int. Conf. Low Temp. Phys.), K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum Press, New York, 1974), p. 224.

    Google Scholar 

  18. D. B. Crum, D. O. Edwards, and R. E. Sarwinski,Phys. Rev. A 9, 1312 (1974).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshitz,Statistical Physics, 2nd ed. (Addison-Wesley, 1969), p. 192.

  20. L. D. Landau,J. Phys. (USSR)5, 71 (1941);11, 91 (1947).

    Google Scholar 

  21. L. Onsager,Nuovo Cimento Suppl. 6, 249 (1949).

    Google Scholar 

  22. R. P. Feynman, inProgress in Low Temperature Physics, Vol. I, C. J. Gorter, ed. (North-Holland, Amsterdam, 1955), p. 17.

    Google Scholar 

  23. A. L. Fetter,Phys. Rev. 138A, 429 (1965).

    Google Scholar 

  24. M. P. Kawatra and R. K. Pathria,Phys. Rev. 151, 132 (1966).

    Google Scholar 

  25. R. C. Clark,Phys. Fluids 12, 396 (1969).

    Google Scholar 

  26. S. V. Iordanskii,Sov. Phys.—JETP 21, 467 (1965).

    Google Scholar 

  27. J. S. Langer and M. E. Fisher,Phys. Rev. Lett. 19, 560 (1967).

    Google Scholar 

  28. J. S. Langer and J. D. Reppy, inProgress in Low Temperature Physics, Vol. VI, C. J. Gorter, ed. (North-Holland, Amsterdam, 1970), p. 1.

    Google Scholar 

  29. M. Chester and R. Ziff,J. Low Temp. Phys. 5, 285 (1971).

    Google Scholar 

  30. G. Kukich, R. P. Henkel, and J. D. Reppy,Phys. Rev. Lett. 21, 197 (1968).

    Google Scholar 

  31. J. R. Clow and J. D. Reppy,Phys. Rev. Lett. 19, 291 (1967).

    Google Scholar 

  32. W. E. Keller and E. F. Hammel,Physics 2, 221 (1966).

    Google Scholar 

  33. G. B. Hess,Phys. Rev. Lett. 27, 977 (1971).

    Google Scholar 

  34. B. Perrin, D. D'Humières, C. Laroche, J. P. Hulin, and A. Libchaber,Phys. Rev. Lett. 28, 1551 (1972).

    Google Scholar 

  35. G. B. Hess, inLow Temperature Physics—LT 13 (Proc. 13th Int. Conf. Low Temp. Phys.), K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum Press, New York, 1974), p. 302.

    Google Scholar 

  36. J. P. Hulin, D. D'Humières, B. Perrin, and A. Libchaber,Phys. Rev. A 9, 885 (1974).

    Google Scholar 

  37. M. E. Banton,J. Low Temp. Phys. 16, 211 (1974).

    Google Scholar 

  38. R. K. Childers and J. T. Tough,Phys. Rev. Lett. 31, 911 (1973).

    Google Scholar 

  39. R. K. Childers and J. T. Tough,J. Low Temp. Phys. 15, 53, 63 (1974).

    Google Scholar 

  40. R. K. Childers and J. T. Tough,Phys. Rev. Lett. 35, 527 (1975).

    Google Scholar 

  41. R. K. Childers and J. T. Tough,Phys. Rev. B 13, 1040 (1976).

    Google Scholar 

  42. W. F. Vinen,Proc. Roy. Soc. A 242, 493 (1957);243, 400 (1957).

    Google Scholar 

  43. G. Ahlers,J. Low Temp. Phys. 1, 159 (1969).

    Google Scholar 

  44. D. H. Liebenberg,Phys. Rev. Lett. 26, 744 (1971).

    Google Scholar 

  45. D. H. Liebenberg, inProgress in Refrigeration Science and Technology;Proceedings of the XIIIth International Conference of Refrigeration, Washington, D.C., 1971, W. T. Pentzer, ed. (Avi, Westport, Connecticut, 1973), p. 689.

    Google Scholar 

  46. D. H. Liebenberg,J. Low Temp. Phys. 5, 267 (1971).

    Google Scholar 

  47. J. K. Hoffer, J. C. Fraser, E. F. Hammel, L. J. Campbell, W. E. Keller, and R. H. Sherman, inLow Temperature Physics—LT 13 (Proc. 13th Int. Conf. Low Temp. Phys.), K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum Press, New York, 1974), p. 253.

    Google Scholar 

  48. W. E. Keller and E. F. Hammel, inLow Temperature Physics—LT 13 (Proc. 13th Int. Conf. Low Temp. Phys.), K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum Press, New York, 1974), p. 263.

    Google Scholar 

  49. L. J. Campbell and D. H. Liebenberg,Phys. Rev. Lett. 29, 1065 (1972).

    Google Scholar 

  50. D. G. Blair and C. C. Matheson, inLow Temperature Physics—LT 13 (Proc. 13th Int. Conf. Low Temp. Phys.), K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum Press, New York, 1974), p. 272.

    Google Scholar 

  51. W. C. Cannon, M. Chester, and B. K. Jones,J. Low Temp. Phys. 9, 307 (1972).

    Google Scholar 

  52. G. Kukich, R. P. Henkel, and J. P. Reppy, inProceedings of the Eleventh International Conference on Low Temperature Physics, J. F. Allen, D. M. Finlayson, and D. M. McCall, eds. (University of St. Andrews, 1968), p. 140.

  53. K. R. Atkins, B. Rosenbaum, and H. Seki,Phys. Rev. 113, 751 (1959).

    Google Scholar 

  54. A. C. Ham and L. C. Jackson,Proc, Roy. Soc. A 240, 243 (1957).

    Google Scholar 

  55. C. J. Gorter and J. H. Mellink,Physics 15, 285 (1949).

    Google Scholar 

  56. P. W. Anderson,Rev. Mod. Phys. 38, 298 (1966).

    Google Scholar 

  57. W. I. Glaberson and R. J. Donnelly,Phys. Rev. 141, 208 (1966).

    Google Scholar 

  58. L. J. Campbell,J. Low Temp. Phys. 8, 105 (1972).

    Google Scholar 

  59. E. R. Huggins,Phys. Rev. A. 1 332 (1970).

    Google Scholar 

  60. E. R. Huggins,Phys. Rev. A 1, 327 (1970).

    Google Scholar 

  61. P. H. Roberts and R. J. Donnelly,Phys. Lett. 31A, 137 (1970).

    Google Scholar 

  62. W. E. Keller and E. F. Hammel,Phys. Rev. Lett. 17, 998 (1966).

    Google Scholar 

  63. R. R. Turkington and R. F. Harris-Lowe,J. Low Temp. Phys. 28, 513 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research for this paper was supported by the Defence Research Board of Canada, Grant number 9550-57.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris-Lowe, R.F. Dissipation by pinned vortex lines in the superfluid helium film. J Low Temp Phys 28, 489–512 (1977). https://doi.org/10.1007/BF00661445

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00661445

Keywords

Navigation