Skip to main content
Log in

NMR relaxation measurements in solid H2 at low ortho-H2 concentrations

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Nuclear transverse and longitudinal relaxation time measurements in solid hcp H 2 are presented for two frequencies, 5.3 and 29 MHz. The ortho molefractionX varied from 2×10−3 to 0.1 and the temperature range extended from 0.4 K to near the triple point, ∼ 13.9 K. Over this range ofX andT, the longitudinal timeT 1is representative of theintramolecular relaxation processes that reflect the orientational fluctuations of the molecules. On the other hand, the rates fromintermolecular dipolar coupling are calculated to be negligible. At concentrationsX≲0.008, the transverse timeT 2is dominated by the contributions from intramolecular relaxation processes, and is found to increase quite strongly with temperature. This new effect is ascribed to a coupling between molecular rotation and lattice vibrations, brought into evidence by the narrow width of the fluctuation spectral density at lowX. ForX>0.01 in the nondiffusion region, the NMR line shape is dominated by the signal from isolated ortho-H2 molecules broadened via intermolecular dipolar interactions, and by the signal from isolated ortho pairs and triangles, etc., configurations. Above 9 K, however, the thermally activated diffusion produces an averaging out of these broadening effects, making it possible to determine theT 2fromintramolecular nuclear spin interactions. For these mixtures,T 1also shows a temperature variation, but with a maximum near 7 K and a flat minimum at higher temperatures. The relaxation data are compared with previous experiments and some systematic discrepancies in the dependence onX are found. The frequency dependence ofT 1extends to higher concentrations than one expects from the theory of Fujio, Hama, and Nakamura, where nuclear relaxation is treated in terms of the orientational fluctuations from intermolecular electric quadrupolar coupling and crystalline fields. In the appendix, results are presented of an earlier attempt in this laboratory to determine the crystalline field splitting inH 2from the temperature variation of the NMR line shape. An upper bound of |V C/k B|=0.028 K is obtained at zero pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Amstutz, H. Meyer, S. M. Myers, and R. L. Mills,J. Phys. Chem. Solids 30, 2693 (1969).

    Google Scholar 

  2. F. Weinhaus and H. Meyer,Phys. Rev. B 7, 2974 (1973).

    Google Scholar 

  3. A. B. Harris,Phys. Rev. B 2, 3495 (1970).

    Google Scholar 

  4. C. C. Sung,Phys. Rev. 167, 271 (1968).

    Google Scholar 

  5. J. Hama, M. Inuzuka, and T. Nakamura,Prog. Theor. Phys. 48, 1769 (1972); J. Hama and T. Nakamura,Prog. Theor. Phys. 44, 303 (1970).

    Google Scholar 

  6. A. B. Harris, A. J. Berlinsky, and H. Meyer,Phys. Rev. B 7, 4720 (1973).

    Google Scholar 

  7. R. Buzerak, M. Chan, and H. Meyer,Solid State Commun. 18, 685 (1976).

    Google Scholar 

  8. W. N. Hardy and J. R. Gaines, as quoted in Refs. 4 and 5.

  9. M. Fujio, J. Hama, and T. Nakamura,Solid State Commun. 13, 1091 (1973); M. Fujio, J. Hama, and T. Nakamura,Prog. Theor. Phys. 54, 293 (1975).

    Google Scholar 

  10. C. Ebner and C. W. Myles,Phys. Rev. B 12, 1638 (1975).

    Google Scholar 

  11. J. Constable and J. R. Gaines,Solid State Commun. 9, 155 (1971).

    Google Scholar 

  12. A. Mukherjee, Thesis, Ohio State University (1976), unpublished; A. Mukherjee and J. R. Gaines, to be published.

  13. A. Abragam,The Principles of Nuclear Magnetism (Oxford University Press, 1961), (a) Chapter IV, Section IV; (b) Chapter IX, Section IV; (c) Chapter X, Section IV.

  14. P. Pedroni, M. Chan, R. Schweizer, and H. Meyer,J. Low. Temp. Phys. 19, 537 (1975).

    Google Scholar 

  15. L. I. Amstutz, H. Meyer, S. M. Myers, and D. C. Rorer,Phys. Rev. 181, 589 (1969).

    Google Scholar 

  16. A. B. Harris, L. I. Amstutz, H. Meyer, and S. M. Myers,Phys. Rev. 175, 603 (1968).

    Google Scholar 

  17. L. I. Amstutz, J. R. Thompson, and H. Meyer,Phys. Rev. Lett. 21, 1175 (1968).

    Google Scholar 

  18. D. Ramm, Thesis, Duke University (1970), unpublished.

  19. S. A. Boggs and H. L. Welsh,Can J. Phys. 51, 1910 (1973).

    Google Scholar 

  20. R. Oyarzun and J. Van Kranendonk,Can. J. Phys. 50, 1494 (1972).

    Google Scholar 

  21. W. P. Hass, N. J. Poulis, and J. J. W. Borleffs,Physica (Utr.) 27, 1037 (1961).

    Google Scholar 

  22. T. Moryia and K. Motizuki,Prog. Theor. Phys. 18, 183 (1957).

    Google Scholar 

  23. W. N. Hardy and A. J. Berlinsky,Phys. Rev. Lett. 34, 1520 (1975); W. N. Hardy, A. J. Berlinsky, and A. B. Harris, to be published.

    Google Scholar 

  24. J. C. Raich and L. B. Kanney, to be published.

  25. T. Nakamura, private communication.

  26. W. N. Hardy and J. R. Gaines,Phys. Rev. Lett. 19, 1417 (1967).

    Google Scholar 

  27. M. Conradi, R. Norberg, and K. Luszczynski,Bull. Am. Phys. Soc. 21, 238 (1976), and to be published.

    Google Scholar 

  28. J. R. Thompson and H. Meyer, unpublished.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by a grant from the AROD and the NSF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buzerak, R.F., Chan, M. & Meyer, H. NMR relaxation measurements in solid H2 at low ortho-H2 concentrations. J Low Temp Phys 28, 415–441 (1977). https://doi.org/10.1007/BF00661440

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00661440

Keywords

Navigation