Astrophysics and Space Science

, Volume 136, Issue 1, pp 91–99 | Cite as

The numerical determination of the eigenfrequencies of a rotating star

  • Chris Koen


A technique for finding the oscillation spectrum of a rotating star based on the solution of two simultaneous ordinary differential equations is described. Results are presented for someg-modes of the polytrope of index 2. It appears that the functional dependence of frequency on rotational velocity is different for different azimuthal wave numbersm.


Differential Equation Ordinary Differential Equation Rotational Velocity Functional Dependence Numerical Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carroll, B. W. and Hansen, C. J.: 1982,Astrophys. J. 263, 352.Google Scholar
  2. Clement, M. J.: 1981,Astrophys. J. 249, 746.Google Scholar
  3. Clement, M. J.: 1984,Astrophys. J. 276, 724.Google Scholar
  4. Clement, M. J.: 1986,Astrophys. J. 301, 185.Google Scholar
  5. Cox, J. P.: 1980,Theory of Stellar Pulsation, Princeton University Press, Princeton.Google Scholar
  6. Koen, C.: 1987,Astrophys. Space Sci. 132, 53.Google Scholar
  7. Managan, R. A.: 1986, preprint.Google Scholar
  8. Papaloizou, J. and Pringle, J. E.: 1978,Monthly Notices Roy. Astron. Soc. 182, 423.Google Scholar
  9. Saio, H.: 1981a,Astrophys. J. 244, 299.Google Scholar
  10. Saio, H.: 1981b,Astrophys. J. 256, 717.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • Chris Koen
    • 1
    • 2
  1. 1.South African Astronomical ObservatorySouth Africa
  2. 2.Department of BiomathematicsTaung, BophuthatswanaSouth Africa

Personalised recommendations