Advertisement

Journal of Low Temperature Physics

, Volume 15, Issue 3–4, pp 281–296 | Cite as

Microwave resonance of magnetic surface states in antimony

  • Hiroyoshi Suematsu
  • Naga-aki Koshino
  • Sei-ichi Tanuma
Article

Abstract

The microwave resonance of the magnetic surface states in antimony has been observed at 23 and 70 GHz and the orientation dependences of the resonance fields have been studied in detail in the trigonal-bisectrix and binary-bisectrix planes. Two dominant series and two less prominent series of the resonances have been observed and interpreted in terms of the Fermi surface of antimony. The two dominant series are attributed to the approximately cylindrical portions of the electron and hole Fermi surfaces. The other two are discussed in connection with the nonellipsoidal shape of the Fermi surface of holes. The Fermi velocities of a few representative points of the Fermi surfaces are evaluated. The results are compatible with the velocities estimated from other properties.

Keywords

Microwave Magnetic Material Antimony Surface State Fermi Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Khaikin,Soviet Phys.—JETP 12, 152 (1960).Google Scholar
  2. 2.
    J. F. Koch and C. C. Kuo,Phys. Rev. 143, 470 (1966).Google Scholar
  3. 3.
    R. E. Prange and T.-W. Nee,Phys. Rev. 168, 779 (1968).Google Scholar
  4. 4.
    T.-W. Nee, J. F. Koch, and R. E. Prange,Phys. Rev. 174, 758 (1968).Google Scholar
  5. 5.
    M. S. Khaikin,Advan. Phys. 18, 1 (1969).Google Scholar
  6. 6.
    J. F. Koch, inSolid State Physics, Vol. 1,Electrons in Metals, J. F. Cochran and R. R. Haering, eds. (Gordon and Breach, New York, 1968), p. 253.Google Scholar
  7. 7.
    J. F. Koch and J. D. Jensen,Phys. Rev. 184, 643 (1969).Google Scholar
  8. 8.
    R. E. Doezema and J. F. Koch,Phys. Rev. B 5, 3866 (1972).Google Scholar
  9. 9.
    L. M. Falicov and P. J. Lin,Phys. Rev. 141, 562 (1966).Google Scholar
  10. 10.
    L. R. Windmiller,Phys. Rev. 149, 472 (1966).Google Scholar
  11. 11.
    J. B. Ketterson and L. R. Windmiller,Phys. Rev. B 1, 463 (1970).Google Scholar
  12. 12.
    N. B. Brandt, N. Ya. Minina, and Chu Chen-Kang,Soviet Phys.—JETP 24, 73 (1967).Google Scholar
  13. 13.
    W. R. Datars and J. Vanderkooy,IBM J. Res. Develop. 8, 247 (1964).Google Scholar
  14. 14.
    E. P. Missell and M. S. Dresselhaus,Phys. Rev. B 5, 1364 (1972).Google Scholar
  15. 15.
    T. Fukase and T. Fukuroi, Proc. Intern. Conf. Phys. Semiconductor Kyoto,J. Phys. Soc. Japan 21 (suppl.), 751 (1966).Google Scholar
  16. 16.
    H. Mori and S. Mase,J. Phys. Soc. Japan 31, 738 (1971).Google Scholar
  17. 17.
    A. P. Korolyk and L. Ya. Matsakov,Soviet Phys.—JETP 25, 270 (1967).Google Scholar
  18. 18.
    R. A. Herrod, C. A. Gage, and R. G. Goodrich,Phys. Rev. B 4, 1033 (1971).Google Scholar
  19. 19.
    S. P. Singhal, R. G. Goodrich, and R. C. Jones,Phys. Rev. B 4, 1202 (1972).Google Scholar
  20. 20.
    S. Singhal and R. E. Prange,Phys. Rev. B 3, 4083 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • Hiroyoshi Suematsu
    • 1
  • Naga-aki Koshino
    • 1
  • Sei-ichi Tanuma
    • 1
  1. 1.The Institute for Solid State PhysicsThe University of TokyoTokyoJapan

Personalised recommendations