Journal of comparative physiology

, Volume 133, Issue 4, pp 247–255 | Cite as

Accuracy of phonotaxis by the green treefrog (Hyla cinerea)

  • Jürgen Rheinlaender
  • H. Carl Gerhardt
  • David D. Yager
  • Robert R. Capranica


  1. 1.

    Phonotactic approaches (N=156) of 42 female green treefrogs (Hyla cinerea) were videotaped over a distance of 3.75 m in response to synthetic mating calls (0.9 kHz and 0.9, 2.7 and 3.0 kHz).

  2. 2.

    To quantify the accuracy of phonotaxis, jump anglesγ and head orientation angles α were measured (Fig. 2) when the animals were 1 m or farther from the sound source.

  3. 3.

    Phonotaxis was extremely accurate in response to the 3-component call, which is behaviorally equivalent to the male's natural mating call. The mean jump angle was\(\bar \gamma = 16.1^\circ\) (Fig. 5). Head scanning occurred prior to about 25% of the jumps. The accuracy of head orientation after scanning was even greater\((\bar \alpha = 8.4^\circ )\) as were the subsequent jumps\((\bar \gamma = 11.8^\circ )\) (Fig. 6 and Table 1).

  4. 4.

    With respect to the two synthetic calls no statistically significant differences in jump accuracy were found (Table 1). Thus the high frequency components around 3 kHz, normally found in the mating call, do not enhance the accuracy of sound localization.

  5. 5.

    Our results are discussed in terms of models of sound localization in vertebrates and invertebrates, and we suggest that the treefrog's ear must act as a sound pressure gradient receiver.



Sound Pressure Sound Source Orientation Angle High Frequency Component Sound Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Autrum, H.: Über Lautäußerungen und Schallwahrnehmung bei Arthropoden. II. Das Richtungshören vonLocusta und Versuch einer Hörtheorie für Tympanalorgane vom Locustidentyp. Z. Vergl. Physiol.28, 327–352 (1940)Google Scholar
  2. Beranek, L.L.: Acoustics. New York: McGraw-Hill 1954Google Scholar
  3. Chung, S.G., Pettigrew, A., Anson, M.: Dynamics of the amphibian middle ear. Nature London272, 142–147 (1978)Google Scholar
  4. Erulkar, S.D.: Comparative aspects of spatial localization of sound. Physiol. Rev.52, 237–360 (1972)Google Scholar
  5. Feng, A.S., Capranica, R.R.: Sound localization in anurans. I. Evidence of binaural interaction in dorsal medullary nucleus of bullfrogs (Rana catesbeiana). J. Neurophysiol.39, 871–881 (1976)Google Scholar
  6. Feng, A.S., Capranica, R.R.: Sound localization in anurans. II. Binaural interaction in superior olivary nucleus of the green treefrog (Hyla cinerea). J. Neurophysiol.41, 43–54 (1978)Google Scholar
  7. Feng, A.S., Gerhardt, H.C., Capranica, R.R.: Sound localization behavior of the green treefrog (Hyla cinerea) and the barking treefrog (H. gratiosa). J. Comp. Physiol.107, 241–252 (1976)Google Scholar
  8. Gerhardt, H.C.: The significance of some spectral features in mating call recognition in the green treefrog (Hyla cinera). J. Exp. Biol.61, 229–241 (1974)Google Scholar
  9. Griffin, D.R., Dunning, D.C., Cahlander, D.A., Webster, F.A.: Correlated orientation sounds and ear movements of horseshoe bats. Nature196, 1185–1186 (1962)Google Scholar
  10. Hill, K.G., Boyan, G.S.: Sensitivity to frequency and direction of sound in the auditory system of crickets (Gryllidae). J. Comp. Physiol.121, 79–97 (1977)Google Scholar
  11. Klumpp, R.G., Eady, H.R.: Some measurements of interaural time difference thresholds. J. Acoust. Soc. Am.28, 859–860 (1956)Google Scholar
  12. Knudsen, E., Konishi, M.: Personal communication (in preparation) (1979)Google Scholar
  13. Konishi, M.: Locatable and non-locatable acoustic signals for barn owls. Am. Nat.107, 775–785 (1973)Google Scholar
  14. Larsen, O.N., Michelsen, A.: Biophysics of the ensiferan ear. III. The cricket ear as a four-input system. J. Comp. Physiol.123, 217–227 (1978)Google Scholar
  15. Lewis, D.B.: The physiology of the tettigoniid ear. II. The response characteristics of the ear to differential inputs: Lesion and blocking experiments. J. Exp. Biol.60, 839–851 (1974)Google Scholar
  16. Michelsen, A., Nocke, H.: Biophysical aspects of sound communication in insects. Adv. Insect Physiol.10, 247–296 (1974)Google Scholar
  17. Mills, A.W.: Auditory localization. In: Foundations of modern auditory theory, Vol. II. Tobias, J.V. (ed.), pp. 303–348. New York: Academic Press 1972Google Scholar
  18. Moushegian, G., Stillman, R.D., Rupert, A.L.: Characteristic delays in superior olive and inferior colliculus. In: Physiology of the auditory system. Sachs, M.B. (ed.), pp. 245–254. Baltimore, Maryland: National Educational Consultants 1970Google Scholar
  19. Murphey, R.K., Zaretsky, M.D.: Orientation to calling song by female crickets,Scapsipedus marginatus (Gryllidae). J. Exp. Biol.56, 335–352 (1972)Google Scholar
  20. Neff, W.D.: Localization and lateralization of sound in space. In: Ciba Foundation Hearing Mechanisms in Vertebrates. Reuck, A.V.S. de, Knight, J. (eds.), pp. 207–233. London: Churchill 1968Google Scholar
  21. Oldham, R.S., Gerhardt, H.C.: Behavioral isolating mechanisms of the treefrogsHyla cinerea andH. gratiosa. Copeia2, 223–230 (1975)Google Scholar
  22. Olson, H.F.: Gradient microphones. J. Acoust. Soc. Am.17, 192–193 (1943)Google Scholar
  23. Payne, R.S.: Acoustic location of prey by barn owls (Tyto alba). J. Exp. Biol.56, 535–573 (1971)Google Scholar
  24. Pumphrey, R.J.: Hearing in insects. Biol. Rev.15, 107–132 (1940)Google Scholar
  25. Pye, J.D., Flinn, M., Pye, A.: Correlated orientation sounds and ear movements of horseshoe bats. Nature196, 1186–1188 (1962)Google Scholar
  26. Pye, J.D., Roberts, L.H.: Ear movements in a Hipposiderid bat. Nature225, 285–286 (1970)Google Scholar
  27. Schwartzkopff, J.: Beitrag zum Problem des Richtungshörens bei Vögeln. Z. Vergl. Physiol.32, 319–327 (1950)Google Scholar
  28. Shaw, E.A.G.: The external ear. In: Handbook of sensory physiology V/1. Keidel, W.D., Neff, W.D.S. (eds.), pp. 455–490.Berlin, Heidelberg, New York: Springer 1974Google Scholar
  29. Simmons, J.A., Vernon, J.A.: Echolocation: discrimination of targets by the batEptesicus fuscus. J. Exp. Zool.176, 315–328 (1971)Google Scholar
  30. Strother, W.F.J.: The electrical response of the auditory mechanisms in the bullfrog (Rana catesbeiana). J. Comp. Physiol. Psychol.52, 157–162 (1959)Google Scholar
  31. Webster, F.A.: Active energy radiating systems: the bat and ultrasonic principles. II. Acoustical control of airborne interceptions by bats. In: Proc. Intern. Congress Technol. Blind 1963Google Scholar
  32. Zwislocki, J., Feldman, R.S.: Just noticeable differences in dichotic phase. J. Acoust. Soc. Am.28, 860–864 (1956)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Jürgen Rheinlaender
    • 1
  • H. Carl Gerhardt
    • 2
  • David D. Yager
    • 3
  • Robert R. Capranica
    • 3
  1. 1.Lehrstuhl für Allgemeine ZoologieRuhr-Universität BochumBochumFederal Republic of Germany
  2. 2.Division of Biological SciencesUniversity of MissouriColumbiaUSA
  3. 3.Section of Neurobiology and Behavior and School of Electrical EngineeringCornell UniversityIthacaUSA

Personalised recommendations