Advertisement

Immunogenetics

, Volume 36, Issue 3, pp 157–165 | Cite as

Comparative mapping ofIGHG, IGHM, FES, andFOS in domestic cattle

  • Tammy C. Tobin-Janzen
  • James E. Womack
Original Articles

Abstract

The immunoglobulin genes have not been genetically characterized as thoroughly in cattle as in other mammals, particularly humans and mice. Comparative gene mapping in mammals suggests that the bovine immunoglobulin heavy chain genes,IGHG4 andIGHM might be syntenic with theFOS oncogene. Interestingly, however, when these genes were assigned to bovine syntenic groups utilizing a panel of bovine: hamster hybrid somatic cells,IGH genes were shown to be syntenic with theFES oncogene rather thanFOS. In this studyIGH andFES were assigned toBos taurus chromosome 21 whileFOS was assigned to chromosome 10. In addition, bovine-specific immunoglobulin-like sequences were observed in the hybrid somatic cells, and one, IGHML1, was mapped to bovine syntenic group U16. The probes used for somatic-cell mapping were also used to screen a small number of cattle of several different breeds for restriction fragment length polymorphisms.IGHG4 andIGHM were shown to be highly polymorphisms. whileFOS andFES were not.

Keywords

Length Polymorphism Heavy Chain Restriction Fragment Length Polymorphism Restriction Fragment Fragment Length Polymorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkison, L., Leung, D., and Womack, J.: Somatic cell mapping and restriction fragment analysis of bovine alpha and beta interferon gene families.Cytogenet Cell Genet 47: 62–65, 1988Google Scholar
  2. Alt, F. W., Yancopoulus, G. D., Blackwell, T. K., Wood, C., Thomas, E., Boss, M., Coffman, R., Rosenberg, N., Tonegawa, S., and Baltimore, D.: Ordered rearrangement of immunoglobulin heavy chain variable region segments.EMBO J 3: 1209–1219, 1984Google Scholar
  3. Barlough, J. E., Jacobson, R. H., and Scott,F. W.: The immunoglobulins of the cat.Cornell Vet 71: 397–407, 1981Google Scholar
  4. Birnboim, H. C.: A rapid alkaline extraction method for the isolation of plasmid DNA.Methods Enzymol 100: 243–255, 1983Google Scholar
  5. Botstein, D., White, R., Skolnick, M., and Davis, R. W.: Construction of a genetic linkage map in man using restriction fragment length polumorphisms.Am J Hum Gen 32: 314–331, 1980Google Scholar
  6. Butler, J. E.: Bovine immunoglobulins: An augmented review.Vet Immunol Immunopathol 4: 43–152, 1983Google Scholar
  7. Butler, J. E.: Biochemistry and biology of ruminant immunoglobulins.In R. Pandey,(ed.):Progress in in Veterinary Microbiology and Immunology, Vol 2, pp. 1–52, Karger, Basel, Switzerland, 1986Google Scholar
  8. Butler, J. E., Heyermann H., Borca, M., Bielecka, M., and Frenyo, L. V.: The isotypic, allotypic and idiotypic heterogeneity of bovine IgG2.Vet Immunol Immunopathol 17: 1–16, 1987Google Scholar
  9. Calame, K., Rogers, J., Early, P., Davis, M., Livant, D., Wall, R., and Hood, L.: Mouse Cµ heavy chain immunoglobulin gene segment contains three intervening sequences separating domains.Nature 284: 452–455, 1980Google Scholar
  10. Carlson, L. M., McCormack, W. T., Postema, C. E., Humphries, E. H., and Thompson, C. B.: Templated insertions in the rearranged chickenI gl V gene segment arise by intrachromosomal gene conversion.Genes Dev 4: 536–547, 1990Google Scholar
  11. Chun, C. J., Kennett, R., Engel, E., Mellman, W. J., and Croce, C. M.: Assignment of the structural genes for the alpha subunit of hexoseaminidase A, mannose phosphate isomerase, and pyruvate kinase to the region 22-qter of human chromosome 15.Somatic Cell Genet 3: 553–560, 1977Google Scholar
  12. Chung, B. C., Matteson, K. J., Voutilainen, R., Mohandas, T. K., and Miller, W. L.: Human cholesterol side-chain cleavage enzyme, P450scc: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta.Proc Nat Acad Sci USA 83: 8962–8966, 1986Google Scholar
  13. Cohen, I. H., Chan, H. S., Track, R. K., and Kidd, K. K.: The human gene map (Homo sapiens) (2N=46) as of HGM10.In S. J. O'Brien (ed.):Gentic Maps of Complex Genomes, 5th edition, pp. 5.3–5.46, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1990Google Scholar
  14. Cox, D. W., Billingsley, G. D., Willard, H. F., and Grzeschik, K. H.: Localization of markers on chromosome 14.Cytogenet Cell Genet 51: 980, 1989Google Scholar
  15. Davisson, M. T., Roderick, T. H., Doolittle, D. P., Hillyard, A. L., and Guidi, J. N.: Locus map of the mouse (Mus musculus/domesticus).In S. J. O'Brien (ed.):Genetic Maps: Locus Maps of Complex Genomes, 5th edition, pp. 4.3–4.35, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1990Google Scholar
  16. D'Eustachio, P.: A genetic map of mouse chromosome 12 composed of polymorphic DNA fragments.J Exp Med 160: 827–838, 1984Google Scholar
  17. Elliot, B. W., Jr., Eisen, H. N., and Steiner, L. A.: Unusual association ofV, J, andC regions in a mouse immunoglobulin λ chain.Nature299: 559–561, 1982Google Scholar
  18. EStes, D. M., Templeton, J. W., and Adams, L. G.: Production and use of murine monoclonal antibodies reactive with bovine IgM isotype and IgG subisotypes (IgG1, IgG2a and IgG2b) in assessing immunoglobulin levles in serum of cattle.Vet Immunol Immunopathol 25: 61–72, 1990Google Scholar
  19. Feinberg, A. P., and Vogelstein, B.: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.Anal Biochem 132: 6–13, 1983aGoogle Scholar
  20. Feinberg, A. P. and Vogelstein, B.: Addendum: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.Anal Biochem 137: 266–267, 1983bGoogle Scholar
  21. Flanagan, J. G. and Rabbitts, T. H.: Arrangement of human immunoglobulin heavy chain constant region implies evolutionary duplication of a segment containing γ, ε, and α genes.Nature 300: 709–713, 1982Google Scholar
  22. Georges, M., Gunawardana, A., Threadgill, D. W., Lathrop, M., Olsaker, I., Mishra, A., Sargeant, L. L., Schoeberlein, A., Steele, M. R., Terry, C., Threadgill, D. S., Zhao, X., Holm, T., Fries, R., and Womack, J. E..: Characterization of a set of variable number of tandem repeat markers conserved in bovidae.Genomics 11: 24–32, 1991Google Scholar
  23. Givol, D., Zakat, R., Effron, K., Rechavi, G., Ram, D., and Cohen, J. B.: Diversity of germline immunoglobulinV H genes.Nature 292: 426–430, 1981Google Scholar
  24. Goding, J. W.: Evidence for linkage of murine β2-microglobulin to H-3 and Ly-4.Immunol 126: 1644–1666, 1981Google Scholar
  25. Halliwell, R. E. W., Schwartzman, R. M., Montgomery, P. C., and Rockay, J. H.: Physicochemical properties of canine IgE.Transplant Proc 7: 537–543, 1975Google Scholar
  26. Harper, M. E., Franchini, G., Love, J., Simon, M. I., Gallo, R. C., and Wong-Staal, F.: Chromosomal sublocalization of humanc-myb andc-fes cellularonc genes.Nature 304: 169–171, 1983Google Scholar
  27. Heddle, R. J. and Rowley, D.: Dog immunoglobulins: 1. Immunochemical characterization of dog serum, parotid saliva, colostrum, milk and small bowel fluid.Immunology 29: 185–195, 1975Google Scholar
  28. Hill, H. L., Delaney, E., Fellows, R. E., and Lebovitz, H. E.: The evolutionary origins of the immunoglobolins.Proc Natl Acad Sci USA 56: 1762–1769, 1966Google Scholar
  29. Honjo, T.: Immunoglobolin genes.Annu Rev Immunol 1: 499–528, 1983Google Scholar
  30. Hsu, E., Schwager, J., and Alt, F. W.: Evolution of immunoglobulin genes:V H families in the amphibianXenopus.Proc Natl Acad Sci USA 86: 8010–8014, 1989Google Scholar
  31. Johnson, F. M., Chaslow, F., Anderson, G., MacDougal, P., Hendren, R. W., and Lewis, S. E.: A variation in mouse kidney pyruvate kinase activity determined by a mutant gene on chromosome 9.Gene Res 37: 123–131, 1981Google Scholar
  32. Knight, K. L. and Becker, R. S.: Isolation of genes encoding bovine IgM, IgG, IgA, and IgE chains.Vet Immunol Immunopathol 17: 17–24, 1987Google Scholar
  33. Kodaira, M., Kirachi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y., and Honjo, T.: Origin and evolution of variable region genes of the human immunoglobulin heavy chain.J Mol Biol 190: 529–541, 1986Google Scholar
  34. Kozak, C. A., Sears, J. F., and Hoggan, M. D.: Genetic mapping of the mouse oncogenes c-Ha-ras-1 and c-fes tochromosome 7.J Virol 47: 217–220, 1983Google Scholar
  35. Kurosawa, Y. and Tonegawa, S.: Organization, structure, and assembly of immunoglobulin heavy chain diversity DNA segments.J Exp Med 155: 201–218, 1982Google Scholar
  36. Lis, J. T.: Fractionation of DNA fragments by polyethylene glycol induced precipitation.Methods Enzymol 65: 347–353, 1980Google Scholar
  37. Liu, C.-P., Tucker, P. W., Bushinski, J. F., and Blattner, F. R.: Mapping of heavy chain genes for mouse immunoglobulins M and D.Science 209: 1348–1353, 1980Google Scholar
  38. Maniatis, T., Fritsch, E. F., and Sambrook, J.:Molecular Cloning: A Laboratory Manual, pp. 280–281, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1982Google Scholar
  39. Matthyssens, G. and Rabbitts, T. H.: Structure and multiplicity of genes for the human immunoglobulin heavy chain variable region.Proc Natl Acad Sci USA 77: 6561–6565, 1982Google Scholar
  40. McCormack, W. T. and Thompson, C. B.: ChickenIgl variable region gene conversions display pseudogene donor preference and 5′ to 3′ polarity.Genes Dev 4: 548–558, 1990Google Scholar
  41. Medrano, L., and Dutrillaux, B.: Chromosomal location of immunoglobulin genes: Partial mapping of these genes in the rabbit and comparison with immunoglobulin genes carrying chromosomes of man and mouse.Adv Cancer Res 41: 323–367, 1986Google Scholar
  42. Michaelson, J.: Genetic polymorphism of β2-microglobulin (B2m) maps to the H-3 region of chromosomes 2.Immunogenetics 13: 167–171, 1981Google Scholar
  43. Migone, N., Oliviero, S., Delange, G., Delacroix, D. L., Boschis, Altruda, F. D., Silengo, L., Demarchi, M., and Carbonara, A. O.: Multiple gene deletions within the human immunoglobulin heavy-chain cluster.Proc Natl Acad Sci USA 81: 5811–5815, 1984Google Scholar
  44. Miller, J. R., Thomsen, P. D., Dixon, S. C., Tucker, E. M., Konfortov, B. A., and Harbitz, I.: Synteny mapping of bovineIGHG2, CRC, andIGF1 genes.Anim Genet, in press, 1991Google Scholar
  45. Miyata, T., Yasunaga, T., Yamawaki-Kataoka, Y., Obata, M., and Honjo, T.: Nucleotide sequence divergence of mouse immunoglobulin λ1 and λ2b chain genes and the hypothesis of intervening sequence-mediated domain transfer.Proc Natl Acad Sci USA 77: 2143–2147, 1980Google Scholar
  46. Nakai, H., Byers, M. G., and Shaws, T. B.: Mapping HEXA to 15q23-q24.Cytogenet Cell Genet 46: 667, 1987Google Scholar
  47. Nichols, E. A., Chapman, V. M., and Ruddle, F. H.: Polymorphism and linkage for mannosephosphate isomerase inMus musculus.Biochem Genet 8: 47–53, 1973Google Scholar
  48. Nishida, Y., Kataoka, T., Ishida, N., Nakai, S., Kishimoto, T., Bottcher, I., and Honjo, T.: Cloning of mouse immunoglobulin ε gene and its location within the heavy chain gene cluster.Proc Natl Acad Sci USA 78: 1581–1585, 1981Google Scholar
  49. O'Brien, S. J., Sewanez, H. N., and Womack, J. E.: Mammalian genome organization, an evolutionary view.Annu Rev Genet 22: 323–351, 1988Google Scholar
  50. Pear, W. S., Munke, M., Ingversson, S., Perlmann, C., Szpirer, J., Levan, G., Francke, U., Klein, G., and Sumegi, J.: Localization of the rat immunoglobulin heavy chain locus to chromosome 6.Immunogenetics 23: 393–395, 1986Google Scholar
  51. Porter, P.: Structural and functional characteristics of immunoglobulins of the common domestic species.In C. A. Brandly and C. E. Cornelius (eds.):Advances in Veterinary Science and Comparative Medicine, Vol 23, pp. 1–21 Academic Press, New York, 1979Google Scholar
  52. Rabbitts, T. H., Forster, A., Dunnick, W., and Bentley, D. L.: The role of gene deletion in the immunoglobolin heavy chain switch.Nature 283: 351–356, 1980Google Scholar
  53. Ravetch, J. V., Siebenlist, U., Korsmeyer, S., Waldmann, T., and Leder, P.: Structure of the human immunoglobulin μ locus: characterization of embryonic and rearrangedJ andD genes.Cell 27: 583–591, 1981Google Scholar
  54. Reynaud, C. A., Anquez, B., Dahan, A., and Weill, J. C.: A single rearrangement event generates most of the chicken immunoglobulin light chain diversity.Cell 40: 283–291, 1985Google Scholar
  55. Schneiderman, R. D., Hanley, W. C., and Knight, K. L.: Expression of 12 rabbit IgA Cα genes as chimeric rabbit-mouse IgA antibodies.Proc Natl Acad Sci USA 86: 7561–7565, 1989Google Scholar
  56. Shamblott, M. J., and Litman, G. W.: Genomic oraganization and sequences of immunoglobulin light chain genes in a primitive vertebrate suggest coevolution of immunoglobulin gene organization.EMBO J 8: 3733–3739, 1989Google Scholar
  57. Shimuzu, A., Takahashi, N., Yaoita, Y., and Honjo, T.: Organization of the constant region gene family of the mouse immunoglobulin heavy chain.Cell 28: 499–506, 1982Google Scholar
  58. Siebenlist, U., Ravetch, J. C., Korsmeyer, S., Waldmann, T., and Leder, P.: Human immunoglobulin D segments encoded in tandem multigenic families.Nature 294: 631–635, 1981Google Scholar
  59. Southern, E. M.: Detection of specific sequences among DNA fragments separated by gel electrophoresis.J Mol Biol 98: 503, 1975Google Scholar
  60. Symons, D. B., Clarkson, C. A., and Beale, D.: Structure on bovine immunoglobulin constant region heavy chain gamma 1 and gamma genes.Mol Immunol 26: 841–850, 1989Google Scholar
  61. Takahashi, N., Shimizu, A., Obata, M., Nishita, T., Nakai, S., Nikaido, T., Kataoka, T., Yamawaki-Kataoka, Y., Yaoita, Y., Ishida, N., and Honjo, T.: Organization of immunoglobulin heavy chain genes and genetic mechanism of class switch.In C. Janeway, E. E. Sercarz, and H. Wigzell, (eds.):Immunoglobulin Idiotypes, ICN-UCLA Symposiam on Molecular and Cellular Biology, Vol 20, pp. 123–134. Academic Press, New York, 1981Google Scholar
  62. Takahashi, N., Ueda, A. S., Obata, M., Nikaido, T., Nakai, S., and Honjo, T.: Structure of human immunoglobulin gamma genes: implications for evolution of a gene family.Cell 29: 671–679, 1982Google Scholar
  63. Tizzard, I.:Veterinary Immunology: An Introduction, 3rd edition, W. B. Saunders, Philadelphia, 1987Google Scholar
  64. Trebichavsky, I., Zikan, J., and Travnicek, J.: The apperance of an IgD-like molecule on pig lymphocytes during ontogeny.Folia Microbiol 28: 484–488, 1983Google Scholar
  65. Williams, A. F. and Barclay, A. N.: The immunoglobulin superfamily-domains for cell surface recognition.Annu Rev Immunol 6: 381–405, 1988Google Scholar
  66. Womack, J. E.: Linkage of mammalian isozyme loci: A comparative approach.In M. C. Rattazzi, J. G. Whitt (eds.):Isozymes: Current Topics in Biological and Medical Research, Vol 6, pp. 207–246, A. R. Liss, New York, 1982Google Scholar
  67. Womack, J. E.: Gene map of the cow (Bos taurus).In S. J. O'Brien, (ed.):Genetics Maps: Locus Maps of Complex Genomes, 5th, pp. 4.121–4.125, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1990Google Scholar
  68. Womack, J. E. and Moll, Y. D.: Gene mapping in cattle: extensive homology with the human map.J Hered 77: 2–7, 1986Google Scholar
  69. Womack, J. E., Davisson, M. T., Eicher, E. M., and Kendall, D. A.: Mapping of nucleoside phosphorylase (Np-1) and esterase 10 (Es-10) on mouse chromosome 14.Biochem Genet 15: 347–355, 1977Google Scholar
  70. Wood, C. and Tonegawa, S.: Diversity and joining segments of mouse immunoglobulin heavy chain geenes are closely linked and in the same orientation: implications for the joining mechanism.Proc Natl Acad Sci USA 80: 3030–3034, 1983Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Tammy C. Tobin-Janzen
    • 1
  • James E. Womack
    • 1
  1. 1.Department of Veterinary PathobiologyTexas A & M UniversityCollege StationUSA

Personalised recommendations