Skip to main content
Log in

The influence of poly(acrylic acid) molecular weight on the fracture toughness of glass-ionomer cements

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A linear elastic fracture mechanics approach has been used to characterize failure in glass-ionomer cements. The toughness, fracture toughness, flexural strength and inherent flaw size increase with the molecular weight of the poly(acrylic acid), whilst the Young's modulus remains approximately constant. The dependence of toughness on poly(acrylic acid) molecular weight is not as large as predicted by a reptation/chain pull out model for fracture and this is thought to be a result of the weak ionic crosslinks formed during the cement reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Crisp andA. D. Wilson,J. Appl. Chem. Biotechnol. 23 (1973) 811.

    Google Scholar 

  2. A. D. Wilson,Brit. Polym. J. 6 (1974) 165.

    Google Scholar 

  3. S. Crisp, G. Abel andA. D. Wilson,J. Dent. 5 (1977) 117.

    Google Scholar 

  4. A. E. Gonzalez,Polymer 25 (1984) 1469.

    Google Scholar 

  5. J. P. Berry,J. Polym. Sci. 50 (1961) 313.

    Google Scholar 

  6. Idem, S. P. E. Trans. 1 (1961) 1.

    Google Scholar 

  7. R. N. Howard, “The Physics of Glassy Polymers”, Applied Science Publishers, London (1973).

    Google Scholar 

  8. S. F. Edwards,Proc. R. Soc. London 92 (1969) 9.

    Google Scholar 

  9. P. G. De Gennes, “Scaling Concepts in Polymer Physics”, Cornell University Press, New York (1979).

    Google Scholar 

  10. Idem, Physics Today, June (1983) 344.

  11. P. Prentice,Polymer 24 (1983) 344.

    Google Scholar 

  12. G. L. Pitman andI. M. Ward,ibid. 20 (1979) 895.

    Google Scholar 

  13. K. Jud, H. H. Kausch andJ. G. Williams,J. Mater. Sci. 16 (1981) 204.

    Google Scholar 

  14. H. H. Kausch andK. Jud,Plast. Rubber Process. Appl. 2 (1982) 265.

    Google Scholar 

  15. P. Prentice,J. Mater. Sci. 20 (1985) 1445.

    Google Scholar 

  16. R. J. Martin, J. F. Johnson andA. R. Cooper,J. Macromol. Sci. Rev. Macromol. Chem. C8 57.

  17. J. D. Ferry, “Viscoelastic Properties of Polymers”, 3rd Edn, Wiley, New York (1980).

    Google Scholar 

  18. T. I. Barry, R. P. Miller andA. D. Wilson, XI Conference on the Silicate Industry, Budapest, May (1973) pp. 881‐893.

  19. D. P. Williams andA. G. Evans,J. Test. Eval (1973) 264.

  20. P. S. Leevers andJ. G. Williams,J. Mater. Sci. 20 (1985) 77.

    Google Scholar 

  21. J. A. Kies andB. J. Clarke, “Fracture”, edited by P. L. Pratt (Chapman and Hall, London, 1969) p. 483.

    Google Scholar 

  22. BS 5447, “Plane Strain Crack Toughness, KIC Testing of Metallic Materials, British Standards Institute (1977).

  23. C. Gurney andJ. Hunt,Proc. R. Soc. London A299 (1967) 508.

    Google Scholar 

  24. W. F. Brown andJ. E. Strawley, ASTM STP 10 (American Society for Testing and Materials, Philadelphia, 1965) p. 13.

    Google Scholar 

  25. S. A. Rodgers, S. A. Brooks, W. Sinclair, G. W. Groves andD. D. Double,J. Mater. Sci. 20 2853 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, R.G., Wilson, A.D. & Warrens, C.P. The influence of poly(acrylic acid) molecular weight on the fracture toughness of glass-ionomer cements. J Mater Sci 24, 363–371 (1989). https://doi.org/10.1007/BF00660982

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00660982

Keywords

Navigation