Journal of Materials Science

, Volume 24, Issue 1, pp 63–68 | Cite as

Structure-properties relationships for densely cross-linked epoxide-amine systems based on epoxide or amine mixtures

Part 2 Water absorption and diffusion
  • V. Bellenger
  • J. Verdu
  • E. Morel


The solubility and diffusivity of water at 100° C, 95% relative humidity were studied for 14 stoichiometric epoxide-amine networks based on epoxide or amine mixtures. Neither the packing density nor the glass transition temperature nor the crosslink density seemed to play a significant role. The water absorption is essentially linked to the concentration of polar structures, but also decreases with the extent of intramolecular hydrogen bonding. This can be accurately predicted using a simple additive relationship. The diffusivity decreases with the hydrophilicity and packing density, but in a complex way probably involving the nature of hydrogen bonds between the water and the substrate.


Hydrogen Polymer Hydrogen Bond Relative Humidity Transition Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Morgan andJ. E. O'Neal,Polym. Plast. Techn. Eng. 10 (1978) 120.Google Scholar
  2. 2.
    M. J. Adamson,J. Mater. Sci. 15 (1980) 1736.Google Scholar
  3. 3.
    J. B. Enns andJ. K. Gilham,J. Appl. Polym. Sci. 28 (1983) 2831.Google Scholar
  4. 4.
    P. Johncock andG. T. Tudgey,Brit. Polym. J. 18 (1986) 292.Google Scholar
  5. 5.
    Y. Diamant, G. Marom andL. J. Broutman,J. Appl. Polym. Sci. 26 (1981) 3015.Google Scholar
  6. 6.
    A. Apicella, R. Tessiere andC. deCataldis,J. Membr. Sci. 18 (1985) 211.Google Scholar
  7. 7.
    V. B. Gupta, L. T. Drzal andM. J. Rich,J. Appl. Polym. Sci. 30 (1985) 4467.Google Scholar
  8. 8.
    J. S. Ellis andF. E. Karasz,Polym. Eng. Sci. 25 (1984) 664.Google Scholar
  9. 9.
    P. Moy, F. E. Karasz,ibid. 20 (1980) 315.Google Scholar
  10. 10.
    R. T. Fuller, R. E. Fornes andS. D. Memory,J. Appl. Polym. Sci. 23 (1979) 1871.Google Scholar
  11. 11.
    N. D. Danieley andR. E. Long,J. Polym. Sci., Polym. Chem. Ed. 19 (1981) 2443.Google Scholar
  12. 12.
    C. Carfagna, A. Apicella andL. Nicolais,J. Appl. Polym. Sci. 27 (1982) 105.Google Scholar
  13. 13.
    E. Morel, V. Bellenger andJ. Verdu,Polymer 26 (1985) 1719.Google Scholar
  14. 14.
    A. Apicella andL. Nicolais,Adv. Polym. Sci. 72 (1985) 69.Google Scholar
  15. 15.
    V. Bellenger, W. Dhaoui, E. Morel andJ. Verdu,J. Appl. Polym. Sci. 35 (1988) 563.Google Scholar
  16. 16.
    C. H. Shen andG. S. Springer,J. Comp. Mater. 10 (1976) 2.Google Scholar
  17. 17.
    V. Bellenger, J. Francillette, P. Hoarau, E. Morel andJ. Verdu,Polymer 28 (1987) 1079.Google Scholar
  18. 18.
    A. Apicella, L. Nicolais, G. Astarita andE. Drioli,Polym. Eng. Sci. 21 (1981) 18.Google Scholar
  19. 19.
    A. H. Sabra, Thèse d'état INSA LYON (1985).Google Scholar
  20. 20.
    J. A. Barrie, in “Diffusion in Polymers” 4th Edn, edited by J. Cranck and G. S. Park (Academic, London, 1981) Ch. 8, pp. 282–83.Google Scholar
  21. 21.
    A. Apicella andL. Nicolais,Adv. Polym. Sci. 72 (1985) 70.Google Scholar

Copyright information

© Chapman and Hall Ltd 1989

Authors and Affiliations

  • V. Bellenger
    • 1
  • J. Verdu
    • 1
  • E. Morel
    • 2
  1. 1.ENSAMParis, Cedex 13France
  2. 2.IRCHAVert le PetitFrance

Personalised recommendations