Skip to main content
Log in

Theory of swelling of a crosslinked substance in equilibrium with a solvent in various phases

  • Polyme Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper the thermodynamic theory of a body in a liquid, crystalline or vaporized solvent is treated. The equilibrium swelling curves are discussed for the different states of the solvent. The slopes of the swelling curves are dependent on the differential enthalpy of dilution of the solvent and, additionally, on the enthalpies of vaporization, crystallization and sublimation of the solvent related to the state of the swelling agent. The slopes of the swelling curves are determined by the differential heat of vaporization, the differential heat of solution of the solvent or the differential heat of fusion according to the state of the swelling agent. Directly below the melting pointT m,1, or directly above the boiling pointT b,1 of the solvent the swelling curves change their slopes with a sharp bend. This phenomenon can be used to determine (∂μ1/∂w 1) at constant temperature and pressure, which means the change of the chemical potential μ1, with the change of the weight fractionw 1 of the solvent. Using a simplified statistical thermodynamic relation it is possible to describe the principal courses of the swelling curves in all states of the solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riecke E (1894) Wied Ann 53:564

    Google Scholar 

  2. Gibbs JW (1875) (Thermodynamics, Chapter 3. Trans of the Connecticut Acad 108; ibid. Gibbs JW (1978) 343 or Dover Book Series (1961) 55

  3. Callen HB (1962) Thermodynamics, 3rd ed, John Wiley & Sons, Inc New York, London

    Google Scholar 

  4. Borchard W (1975) Habilitationsschrift, Clausthal

  5. Dusek K, Patterson D (1968) J Polymer Sci 6:1209

    Google Scholar 

  6. Borchard W (1977) Ber Bunsenges Phys Chem 81:989

    Google Scholar 

  7. Breitenbach JW, Frank HP (1948) Mh Chemie 79:531

    Google Scholar 

  8. Rehage G (1964) Kolloid-Z u Z Polymere 194:16

    Google Scholar 

  9. Rehage G (1964) Kolloid-Z u Z Polymere 196:97

    Google Scholar 

  10. Rehage G (1964) Kolloid-Z u Z Polymere 199:1

    Google Scholar 

  11. Rehage G, Borchard W (1973) The Thermodynamics of the Glassy State, ed Haward RN, Applied Science Publishers Ltd, England

    Google Scholar 

  12. Flory PJ, Rehner JR (1943) J Chem Phys 11:321

    Google Scholar 

  13. Flory PJ (1942) J Chem Phys 10:52

    Google Scholar 

  14. Hermans JJ (1947) Trans Farad Soc 43:591

    Google Scholar 

  15. Dusek K (1972) J Polymer Sci 39:83

    Google Scholar 

  16. Graessley WW (1974) Adv Polymer Sci 16:3

    Google Scholar 

  17. Dobson GR, Gordon M (1965) J Chem Phys 43:705

    Google Scholar 

  18. Dusek K, Prins W (1968) Adv Polymer Sci 6:58

    Google Scholar 

  19. Staverman AJ (1982) Adv Polymer Sci 44:73

    Google Scholar 

  20. Eichinger BE (1972) Macromolecules 5:496

    Google Scholar 

  21. Rempp P, Herz JE, Borchard W (1978) Adv Polymer Sci 26:105

    Google Scholar 

  22. Miller DR, Macsko CW (1976) Macromolecules 9:206

    Google Scholar 

  23. Petrovic ZS, McKnight WJ, Koningsveld R, Dusek K (1987) Macromolecules 20:1088

    Google Scholar 

  24. Borchard W (1978) European Polymer Journal 14:661

    Google Scholar 

  25. Tomka I, Inauguraldissertation, Bern (1973)

  26. Kuhn W, Kuhn H (1943) Helv chim Acta 26:1394

    Google Scholar 

  27. Kanig G (1960) Kolloid-Zeitschrift 173:97

    Google Scholar 

  28. Kanig G, Karge H (1966) J Colloid Interface Sci 21:649

    Google Scholar 

  29. Arndt KF, Häusler KG, Schröder E, Schulze N (1984) Plaste und Kautschuk 8:281

    Google Scholar 

  30. Arndt KF, Zander P (1985) Plaste und Kautschuk 32:155

    Google Scholar 

  31. Zander P, Arndt KF, Mörke W (1985) Plaste und Kautschuk 33:288

    Google Scholar 

  32. Zander P, Schenk W, Arndt KF (1986) Plaste und Kautschuk 33:409

    Google Scholar 

  33. Borchard W, Steinbrecht U in preparation

  34. Haase R (1956) Thermodynamik der Mischphasen Springer Verlag, Berlin

    Google Scholar 

  35. Schwarz J, Borchard W, Rehage G (1971) Kolloid-Z u Z Polymere 244:193

    Google Scholar 

  36. Freundlich H (1932) Kapillarchemie Vol II. Akad Verlagsges M.B.H. Leipzig, page 587

    Google Scholar 

  37. Scholte Th G (1970) J of Polymer Sci Part A-2 8:841

    Google Scholar 

  38. Kahlweit M (1963) Zeitschrift Phys Chem N.F. 36:293

    Google Scholar 

  39. Oikawa H, Murakami K (1984) Polymer 25:225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borchard, W., Steinbrecht, U. Theory of swelling of a crosslinked substance in equilibrium with a solvent in various phases. Colloid Polym Sci 269, 95–104 (1991). https://doi.org/10.1007/BF00660297

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00660297

Key words

Navigation