Skip to main content
Log in

Physical nature of degradation of light-emitting diodes and semiconductor lasers

  • Published:
Journal of Applied Spectroscopy Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. P. G. Eliseev, “Problem of reliability and physics of degradation processes in semiconductorlasers,” in: Progress in Science and Technology, Radio Engineering Series [in Russian], VINITI, Moscow (1978). Vol. 14, No. 2, p. 65.

    Google Scholar 

  2. P. Petroff and R. L. Hartman, “Defect structure introduced during operation of heterojunction GaAs lasers,” Appl. Phys. Lett.,23, No. 8, 469–471 (1973).

    Google Scholar 

  3. B. C. De Loach, B. W. Hakki, R. L. Hartman, and L. A. D'Asaro, “Degradation of CW GaAs double herojunction lasers at 300°K,” Proc. IEEE,61, No. 7, 1042–1044 (1973).

    Google Scholar 

  4. L. V. Druzhinina, V. T. Bublik, L. M. Dolginov, et al., “Investigation of crystalline perfection of heterostructures in a system of solid solutions AlAs-GaAs and its effect on the characteristics of injection lasers,” Zh. Tekh. Fiz.,44, No. 7, 1499–1506 (1974).

    Google Scholar 

  5. R. Ito, H. Nakashima, and O. Nakada, “Growth of dark lines from crystal defects in GaAs-GaAlAs double heterostructure crystals,” Jpn. J. Appl. Phys.,13, No. 8, 1321–1322 (1974).

    Google Scholar 

  6. V. P. Gribkovskii, V. K. Kononenko, G. T. Pak, G. I. Ryabtsev, V. A. Samoilyukovich, and I. V. Yashimov, “Development of defects in the active region of heterolasers,” Zh. Prikl. Spektrosk.,26, No. 2, 243–247 (1977).

    Google Scholar 

  7. V. F. Voronin, N. D. Zhukov, V. K. Kochenko, G. I. Ryabtsev, and S. A. Sosnovskii, “Formation of defects in active region of heterolasers and change in internal parameters,” Zh. Prikl. Spektrosk.,35, No. 2, 272–279 (1981).

    Google Scholar 

  8. T. Kajimura, K. Aiki, and J. Umeda, “Correspondence between nonradiative dark spots microplasma emissions and dislocation pits in GaP:N LEDS,” J. Electrochem. Soc.,122, No. 11, 1559–1560 (1975).

    Google Scholar 

  9. P. W. Hutchinson and P. S. Dobson, “Defect structure of degraded GaAlAs-GaAs lasers,” Phil. Mag.,32, No. 5, 745–754 (1975).

    Google Scholar 

  10. P. Petroff and R. L. Hartman, “Rapid degradation phenomenon in heterojunction GaAlAsGaAs lasers,” J. Appl. Phys.,45, No. 9, 3899–3903 (1974).

    Google Scholar 

  11. P. Petroff, W. D. Johnston, and R. L. Hartman, “Nature of optically induced defects in Ga1−xAlxAs-GaAs double heterojunction laser,” Appl. Phys. Lett.,25, No. 4, 226–233 (1974).

    Google Scholar 

  12. P. W. Hutchinson, P. S. Dobson, S. O'Hara, and D. H. Newman, “Defect structure of degraded heterojunction GaAlAs-GaAs lasers,” Appl. Phys. Lett.,14, No. 10, 1561–1568 (1975).

    Google Scholar 

  13. R. Ito, H. Nakashima, S. Kishino, and O. Nakada, “Degradation sources in GaAlAs-GaAs double heterostrue ture lasers,” IEEE JQE,QE-11, No. 7, 551–556 (1975).

    Google Scholar 

  14. P. M. Petroff, “Point defects and dislocation climb in III-V compounds semiconductors,” J. Phys.,40, 201–210 (1979).

    Google Scholar 

  15. D. V. Lang, P. M. Petroff, and R. A. Logan, “Recombination enhanced interaction between point defects and dislocation climb in semiconductors,” Phys. Rev. Lett.,42, No. 20 1363–1366 (1979).

    Google Scholar 

  16. P. J. Dean and W. J. Choyke, “Recombination-enhanced defect reaction, strong new evidence of an old concept in semiconductors,” Adv. Phys.,26, No. 1, 1–30 (1977).

    Google Scholar 

  17. P. G. Eliseev, I. N. Zavestovskaya, and I. A. Poluéktov, “Mechanism of displacement of atoms in laser crystals under action of nonradiative recombination,” Kvantovaya Elektron.,5, No. 1, 248–250 (1978).

    Google Scholar 

  18. D. V. Lang and L. C. Kimerling, “Observation of recombination enhanced defect reaction in semiconductors,” Phys. Rev. Lett.,38, No. 8, 489–492 (1974).

    Google Scholar 

  19. D. V. Lang, L. C. Kimerling, and S. J. Leung, “Recombination enhanced annealing of the E1 and E1 defect levels in 1 MeV electron-irradiated n-GaAs,” J. Appl. Phys.,47, No. 8, 3587–3591 (1976).

    Google Scholar 

  20. D. V. Lang and L. C. Kimerling, “Observation of a thermal defect annealing in GaP,” Appl. Phys. Lett.,28, No. 5, 248–250 (1976).

    Google Scholar 

  21. G. R. Woolhouse, “Degradation in injection lasers,” IEEE JQE,QE-11, No. 7, 556–570 (1975).

    Google Scholar 

  22. K. Pommer, “Reliability study of GaAs0.63P0.37 LED's,” in: 13th Ann. Proc. Reliab. Phys., Las Vegas, NV, No. 4, 200–206 (1975).

    Google Scholar 

  23. J. Matsui, K. Ishida, and J. Naunichi, “Rapid degradation in double heterostructure lasers,” Jpn. J. Appl. Phys.,14, No. 10, 1555–1560 (1975).

    Google Scholar 

  24. J. Naunichi, J. Matsui, and K. Ishida, “Rapid degradation in double heterostructure lasers,” Jpn. J. Appl. Phys.,14, No. 10, 1561–1568 (1975).

    Google Scholar 

  25. R. L. Longini, “Rapid zinc diffusion in gallium arsenide,” Solid State Electron.,5, No. 2, 123–130 (1962).

    Google Scholar 

  26. M. K. Sheinkman, “Improvement of photosensitivity and intensity of luminescence with photothermal dissociation of donor-acceptor pairs,” Pis'ma Zh. Eksp. Teor. Fiz.,15, No. 11, 673–676 (1972).

    Google Scholar 

  27. N. E. Korsunskaya, I. V. Markevich, T. V. Torchinskaya, and M. K. Sheinkman, “Photosensitivity degradation mechanism in CdS:Cu single crystals,” Phys. Status Solidi,61, No. 2, 75–80 (1980).

    Google Scholar 

  28. G. D. Watkins, “Lattice defects in semiconductors 1974,” Inst. Phys. Conf., Ser. 23, 388 (1975).

    Google Scholar 

  29. Yu. A. Osip'yan and V. F. Petrenko, “Effect of short-circuiting in plastic deformation of ZnS and motion of charged dislocations,” Zh. Tekh. Fiz.,69, No. 4, 1362–1371 (1975).

    Google Scholar 

  30. S. I. Bredikhin and S. Z. Shmurak, “Effect of an electric field on deformation-generated luminescence of ZnS crystals,” Pis'ma Zh. Eksp. Teor. Fiz.,21, No. 6, 342–345 (1975).

    Google Scholar 

  31. L. S. Smirnov, ed., Problems in Radiation Semiconductor Technology [in Russian], Nauka, Novosibirsk (1980).

    Google Scholar 

  32. K. W. Boer, W. Borchardt, and S. Oberlander, “Zurkinetik photochemischer reactionen on CdS-Einkristallen,” Z. Phys. Chem.,210, No. 5, 218–231 (1959).

    Google Scholar 

  33. W. Borchardt, “Photochemische reactionen und tilgung on CdS-Einkristallen,” Phys. Status Solidi,1, No. 3, K52-K58 (1962).

    Google Scholar 

  34. W. Borchardt, “Uber photochemische reactionen an Kadmiumsulfide,” Phys. Status Solidi,2, No. 11, 1575–1592 (1962).

    Google Scholar 

  35. S. Kanev, V. Stoyanov, and M. Lokova, “Photochemical reactions in CdS highly doped with Cu,” C. R. Acad. Bulg. Sci.,22, No. 8, 863–865 (1969).

    Google Scholar 

  36. N. E. Korsunskaya, I. V. Markevich, and M. K. Sheinkman, “Photocehmical reaction in CdS,” Phys. Status Solidi,13, No. 1, 25–36 (1968).

    Google Scholar 

  37. N. E. Korsunskaya, I. V. Markevich, and T. V. Torchinskaya, “Investigation of the nature of the recombination center responsible for the luminescence band in the region O.95 μm in CdS crystals,” Fiz. Tekh. Poluprovodn.,11, No. 1, 128–131 (1977).

    Google Scholar 

  38. T. V. Torchinskaya, “Investigation of mechanisms of photochemical reactions and degradation of photocurrent in A2B6 semiconductors,” Author's Abstract of Candidate's Dissertation, Institute of Semiconductors, Academy of Sciences of the Ukrainian SSR, Kiev (1978).

    Google Scholar 

  39. N. E. Korsunskaya, I. V. Markevich, T. V. Torchinskaya, and M. K. Sheinkman, “Interaction of donors and acceptors and photochemical reactions of different types in CdS single crystals,” Ukr Fiz. Zh.,22, No. 3, 363–369 (1977).

    Google Scholar 

  40. M. K. Sheinkman, “Possible mechanism for recombination on multiply charged centers in semiconductors,” Fiz. Tverd. Tela,5, No. 10, 2780–2785 (1963).

    Google Scholar 

  41. M. K. Sheinkman, E. I. Tolpygo, and K. B. Tolpygo, “Auger-recombination with participation of carriers bound on different centers,” Fiz. Tverd. Tela,73, No. 6, 1780–1794 (1965).

    Google Scholar 

  42. N. E. Korsunskaya, I. V. Markevich, T. V. Torchinskaya, and M. K. Sheinkman, “Role of fine donors in degradation of photoconductivity in CdS crystals,” Pis'ma Zh. Eksp. Teor. Fiz.,6, No. 2, 120–124 (1980).

    Google Scholar 

  43. A. Sakalas and J. Viscakes, “Polarity inversions of the photohall EMF,” Phys. Status Solidi,33, No. 1, 125–130 (1969).

    Google Scholar 

  44. E. A. Galashin and K. V. Chibisov, “Nature of photographic sensitivity,” Dokl. Akad. Nauk SSSR,178, No. 1, 627–630 (1968).

    Google Scholar 

  45. M. K. Sheinkman, N. E. Korsunskaya, I. V. Markevich, and T. V. Torchinskaya, “Recombination stimulated transformation of complex luminescence centers in CdS crystals,” Fiz. Tekh. Proluprovodn.,14, No. 4, 438–443 (1980).

    Google Scholar 

  46. V. V. Dyakin, E. A. Sal'kov, and V. A. Khvostov, “Interimpurity hole transitions in cadmium sulfide,” Fiz. Tekh. Poluprovodn.,9, No. 9, 1812–1815 (1975).

    Google Scholar 

  47. V. V. Dyakin, E. A. Sal'kov, V. A. Khvostov, and M. K. Sheinkman, “Auger mechanism of interaction of luminescence centers with DA pairs in cadmium sulfide,” Fiz. Tekh. Poluprovodn.,10, No. 19, 2288–2292 (1976).

    Google Scholar 

  48. N. E. Korsunskaya, I. V. Markevich, T. V. Torchinskaya, and M. K. Sheinkman, “Auger excitation of 1.6–2.0 μm luminescence band in cadmium sulfide crystals,” Fiz. Tekh. Poluprovodn.,11, No. 12, 2346–2350 (1977).

    Google Scholar 

  49. T. Kamejima and H. Yonezu, “Catastrophic optical damage generation mechanism in (AlGa)As DH lasers,” Jpn. J. Appl. Phys.,19, Suppl. 19-1, 425–429 (1980).

    Google Scholar 

  50. C. H. Henry, P. M. Petroff, R. A. Logan, and F. R. Maritt, “Rapid degradation of the LED's,” J. Appl. Phys.,50, No. 2, 3721–3725 (1979).

    Google Scholar 

  51. J. Shinoda and T. Kamakomi, “Rapid degradation in GaAs-AlGaAs lasers caused by process induced defects,” Jpn. J. Appl. Phys.,16, No. 7, 1271–1272 (1977).

    Google Scholar 

  52. O. Ueda, S. Isorumi, S. Yamakoshi, and T. Kotani, “Defect structure of degraded Ga1−x AlxAs double heterostructure LED's,” J. Appl. Phys.,50, No. 2, 765–772 (1979).

    Google Scholar 

  53. P. W. Hutchinson, P. S. Dobson, B. Wakefield, and S. O'Hara, “The generation of point defects in GaAs,” Sol. State Electron.,21, No. 11/12, 1413–1417 (1978).

    Google Scholar 

  54. A. S. Jordan and J. M. Ralston, “A diffusion model for GaP red LED's degradation,” J. Appl. Phys.,47, No. 10, 4518–4527 (1976).

    Google Scholar 

  55. P. G. Eliseev, “Kinetics of aging of electroluminescent diodes and injection lasers,” Fiz. Tekh. Poluprovodn.,6, No. 9, 1655–1658 (1972).

    Google Scholar 

  56. N. Shimano, “Degradation of GaAs0.9O0.1 LED's operating at high current densities,” Jpn. J. Appl. Phys.,17, No. 6, 1323–1330 (1978).

    Google Scholar 

  57. S. Yamakoshi, O. Nasegawa, Hamaguchi, et al., “Degradation of Ga1−xAlxAs LED's,” Appl. Phys. Lett.,31, No. 9, 627–629 (1977).

    Google Scholar 

  58. A. Yu. Malinin, O. B. Nevskii, M. S. Minazhrinov, et al., “Investigation of degradation with heat treatment of liquid-phase epitaxial structures,” Fiz. Tekh. Poluprovodn.,13, No. 8, 1617–1638 (1979).

    Google Scholar 

  59. W. B. Joyce, R. W. Dixon, and R. L. Hartman, “Statistical characterization of the lifetime of (Al, Ga)As lasers,” Appl. Phys. Lett.,28, No. 11, 684–686 (1976).

    Google Scholar 

  60. H. Imai, T. Fujiwara, Segik, etal., “Degradation of optically pumped GaAlAs double heterostructures at elevated temperatures,” Jpn. J. Appl. Phys.,18, No. 3, 589–595 (1979).

    Google Scholar 

  61. C. H. Henry and P. D. Dapkus, “Degradation of GaP LED's,” J. Appl. Phys.,47, No. 9, 4067–4070 (1976).

    Google Scholar 

  62. P. D. Dapkus and C. H. Henry, “Degradation of GaP LED's,” J. Appl. Phys.,47, No. 9, 4061–4066 (1976).

    Google Scholar 

  63. C. E. Barnes, “A comparison of λ-induced degradation and forward bias-induced degradation of GaP:Zn:O LED's,” J. Electron. Mater.,7, No. 4, 589–617 (1976).

    Google Scholar 

  64. T. D. Dzhafarov, M. H. Kolotov, and L. A. Litvin, “The influence of λ-irradiation on the degradation of red-emitting GaP LED's,” Phys. Status Solidi,49, No. 1, 211–215 (1978).

    Google Scholar 

  65. A. A. Antoshin, G. V. Gatal'skii, and F. P. Korshunov, “Effect of irradiation by electrons with different energies on electroluminescence of p-n junction,” Zh. Prikl. Spektrosk.,30, No. 2, 339–341 (1979).

    Google Scholar 

  66. P. G. Eliseev, I. Z. Pinsker, and Yu. R. Fedorov, “Degradation of injection lasers in operation and under action of fast particles,” Kvantovaya Elektron.,1, No. 5, 1271–1279 (1974).

    Google Scholar 

  67. A. A. Bergh, “Bulk degradation of GaP red LED's,” IEEE Trans. Electron. Devices,ED-18, No. 3, 166–170 (1971).

    Google Scholar 

  68. V. B. Evstropov, A. M. Kogan, V. E. Trushina, and B. V. Tsarenkov, “Change in concentration of recombination centers as a result of prolonged passage of injection current through p-n junction,” Fiz. Tekh. Poluprovodn.,5, No. 7, 1454–1457 (1971).

    Google Scholar 

  69. N. B. Luk'yanchikova, N. P. Garbar, and M. K. Sheinkman, “Current noise and electroluminescent emission of GaP light-emitting diodes and their threshold characteristics,” in: All-Union Conference on Recombination Radiation and Semiconductor Light Sources [in Russian], Izd-vo Bakin. Gos. Un-ta, Baku (1971).

    Google Scholar 

  70. A. A. Ptashchenko, V. A. Presnov, I. I. Kruglov, et al., “Degradation of light-emitting diodes based on GaAs1−xPx and Ga1−xAlxAs,” Elektron. Tekh. Ser. 2, Poluprovodn. Prib., No. 2, 37–44 (1973).

    Google Scholar 

  71. N. B. Lukyanchikova, N. P. Garbar and M. N. Zargaryants, “Light and voltage noise of lasers based on GaAs-AlxGa1−xAs heterojunctions,” Phys. Status Solidi,20, No. 2, 736–745 (1973).

    Google Scholar 

  72. N. B. Luk'yanchikova, N. P. Garbar, and M. K. Sheinkman, “Excess currents and noise of commercial GaP light-emitting diodes,” Fiz. Tekh. Poluprovodn.,6, No. 5, 869–877 (1972).

    Google Scholar 

  73. V. D. Vedenin, V. V. Evstropov, V. N. Kamishen, and B. V. Tsarenkov, “Nonradiative component of the current arising with degradation of GaP p-n structures,” Fiz. Tekh. Poluprovodn.,9, No. 10, 1976–1982 (1975).

    Google Scholar 

  74. K. Kaneko, “Degradation of GaP green LED's,” Jpn. J. Appl. Phys.,15, No. 7, 1287–1296 (1976).

    Google Scholar 

  75. S. A. Steiner and R. A. Anderson, “Degradation of GaAs injection devices,” Solid State Electron.,11, No. 1, 65–86 (1968).

    Google Scholar 

  76. A. A. Ptashchenko, V. P. Sushkov, A. F. Litovchenko, et al., “Investigation of mechanisms of degradation of light-emitting diodes based on GaAS1−xPx and Ga1−xAlxAs with low injection levels,” Elektron. Tekh. Ser. 2, Poluprovodn. Prib., No. 8, 41–54 (1976).

    Google Scholar 

  77. R. H. Weissman, W. L. Snyder, G. T. Ikari, and T. L. Larsen, “Degradation studies in GaAs0.6P0.4 light-emitting diodes,” in: 12th Ann. Proc. Reliab. Phys., Las Vegas, NV, 273–277 (1974).

  78. E. F. Thomas, “The mechanisms of current induced degradation in GaAs light-emitting diodes,” in: 13th Ann. Proc. Reliab. Phys., Las Vegas, NV, 215–220 (1975).

  79. A. A. Ptashchenko, V. A. Presnov, I. I. Kruglov, et al., “Excess currents and aging of light-emitting diodes based on GaAs,” Elektron. Tekh. Ser. 2, Poluprovodn. Prib., No. 7, 16–20 (1971).

    Google Scholar 

  80. N. B. Luk'yanchikova, N. P. Garbar, I. I. Sypko, M. K. Sheinkman, and A. M. Kogan, “Noise and degradation processes in injection lasers,” Pis'ma Zh. Tekh. Fiz.,5, No. 9, 1358–1362 (1979).

    Google Scholar 

  81. J. M. Ralston and O. G. Lorimor, “Degradation of bulk electroluminescent efficiency in Zn, O doped GaP LED's,” Prob. Soc. Inf. Display,18, No. 2, 186–188 (1977).

    Google Scholar 

  82. V. P. Gribkovskii, V. K. Kononenko, G. T. Pak, G. I. Ryabtsev, I. V. Yashumov, and N. P. Chernousov, “Degradation of heterolasers and change in their internal parameters,” Zh. Prikl. Spektrosk.,26, No. 4, 633–638 (1977).

    Google Scholar 

  83. V. M. Busov, V. M. Marakhonov, R. T. Seisyan, and M. N. Shulinskii, “Problem of the mechanism of degradation of luminescent diodes based on AlAs-GaAs,” Fiz. Tekh. Poluprovodn.,11, No. 2, 248–251 (1977).

    Google Scholar 

  84. A. A. Ptashchenko, A. F. Litovchenko, V. A. Teplyakov, and V. M. Baranov, “Motion of impurity centers at room temperature in p-n junctions based on GaAs, Ga1−xAlxAs, and GaAl1−xPx,” Ukr. Fiz. Zh.,23, No. 1, 100–107 (1978).

    Google Scholar 

  85. T. Okumura and T. Ikoma, “Efficiency degradation and deep level change in GaP Red LED's,” IEEE Trans. Electron. Devices,ED-24, No. 7, 965–969 (1977).

    Google Scholar 

  86. D. V. Lang, R. L. Hartman, and N. E. Schumaker, “Capacitance spectroscopy studies in degraded AlxGa1−xAs DH stripe geometry lasers,” J. Appl. Phys.,47, No. 11, 4987–4992 (1976).

    Google Scholar 

  87. B. Hamilton, A. R. Peaker, S. Bramwell, W. Harding, and D. R. Wight, “Deep-level controlled lifetime and luminescence efficiency in GaP,” Appl. Phys. Lett.,26, No. 12, 702–704 (1975).

    Google Scholar 

  88. B. Tell and C. van Opdorp, “Capacitance spectroscopy of degraded GaAsP light-emitting diodes,” J. Appl. Phys.,49, No. 5, 2973–2977 (1978).

    Google Scholar 

  89. C. Lopez, A. Garcia, F. Garcia, and E. Munoz, “Native levels and degradation in GaAs0.6, p0.4, LED's,” Solid State Electron.,22, No. 1, 81–85 (1979).

    Google Scholar 

  90. T. V. Torchinskaya and M. K. Sheinkman, “Transformation of centers and degradation of the parameters of semicomductor lasers,” in: Quantum Electronics [in Russian], Izd. Akad. Nauk SSSR, Kiev (1981). No. 21, pp. 75–90.

    Google Scholar 

  91. V. P. Sushkov and A. A. Shepitilova, “Investigation of degradation of the properties of red light-emitting diodes based on GaAlAs and GaAsP with prolonged operation,” in: Gallium Arsenide [in Russian], Izd. Tomsk. Un-ta, Tomsk (1974). No. 2, pp. 219–222.

    Google Scholar 

  92. R. W. Hamaker, J. Laskowski, R. J. Sepalla, and J. V. Franko, “Early appreciation in zinc diffused GaAs-electroluminescent infrared diodes,” in: 13th Ann. Proc. Reliab. Phys., Las Vegas, NV, No. 4, 207–214 (1975).

    Google Scholar 

  93. I. Ladany and H. Kressel, “Degradation in short-wavelength AlGaAs LED's,” Electron. Lett.,14, No. 13, 407–409 (1978).

    Google Scholar 

  94. R. Solomon and D. Defevere, “Efficiency shift in very high efficiency GaP (Zn, O) diodes,” Appl. Phys. Lett.,21, No. 6, 257–260 (1972).

    Google Scholar 

  95. S. Metz, “Enhanced degradation and deep level formation at dislocations in GaAs0.6P0.4 LED's,” Appl. Phys. Lett.,30, No. 6, 296–297 (1977).

    Google Scholar 

  96. M. Ettenberg and C. J. Nuese, “Reduced degradation in InxGa1−xAs LED's,” J. Appl. Phys.,46, No. 5, 2137–2142 (1975).

    Google Scholar 

  97. D. Shaw, ed., Atomic Diffusion in Semiconductors, Plenum Publishing (1973).

  98. A. Onton and M. R. Lorenz, “Dependence of radiative efficiency in GaP diodes on heat treatment,” Appl. Phys. Lett.,12, No. 4, 115–117 (1968).

    Google Scholar 

  99. S. O'Hara, P. W. Hutchinson, and P. S. Dobson, “The origin of dislocation climb during laser operation,” Appl. Phys. Lett.,30, No. 8, 368–371 (1977).

    Google Scholar 

  100. J. A. Van Vechten, “Microscopic mechanisms of growth of dark line defects in double heterostructure lasers,” J. Electrochem. Soc.,122, No. 11, 1556–1560 (1975).

    Google Scholar 

Download references

Authors

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 38, No. 3, pp. 371–382, March, 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torchinskaya, T.V., Sheinkman, M.K. Physical nature of degradation of light-emitting diodes and semiconductor lasers. J Appl Spectrosc 38, 273–282 (1983). https://doi.org/10.1007/BF00659876

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00659876

Keywords

Navigation