Skip to main content
Log in

Quasienergetic method in the theory of opticocollisional transitions

  • Published:
Journal of Applied Spectroscopy Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. L. A. Vainshtein, I. I. Sobel'man, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  2. V. S. Lisitsa and S. I. Yakovlenko, “Optical and radiational collisions,” Zh. Eksp. Teor. Fiz.,66, 1550–1559 (1974).

    Google Scholar 

  3. V. S. Lisitsa and S. I. Yakovlenko, “Nonlinear theory of broadening and generalization of the Karplus-Shvinger formula,” Zh. Eksp. Teor. Fiz.,68, 479–491 (1975).

    Google Scholar 

  4. S.I. Yakovlenko, “Absorption of powerful resonant radiation in the collisional broadening of lines,” Usp. Fiz. Nauk,136, 593–620 (1982).

    Google Scholar 

  5. R. W. Falkone, W. R. Green, J. C. White, et al., “Observation of laser-induced inelastic collisions,” Phys. Rev. A,15, 1333–1335 (1977).

    Google Scholar 

  6. S. I. Yakovlenko, “Laser-induced radiational collisions,” Kvantovaya Elektron.,5, 259–298 (1978).

    Google Scholar 

  7. R. Z. Vitlina and A. V. Chaplik, “Collision of atoms and molecules in powerful light fields,” Avtometriya, No. 2, 118–131 (1978).

    Google Scholar 

  8. J. Weiner, “Inelastic collision processes in the presence of intense optical-fields,” in: Proceedings of the Summer School on Chemical Photophysics, Les Houches (1979).

  9. S. E. Harris, J. F. Young, W. R. Green, et al., “Laser induced collisional and radiative energy transfer,” in: Laser Spectroscopy IV, H. Walther and K. W. Rothe (eds.), Springer-Verlag, Heidelberg (1980), pp. 349–359.

    Google Scholar 

  10. I. V. Hertel, “Introductory survey on laser assisted collisions,” in: Electronic and Atomic Collisions, N. Oda and K. Takayanagi (eds.), North-Holland, Amsterdam (1980), pp. 675–682.

    Google Scholar 

  11. P. L. DeVries, K.-S. Lam, and T. F. George, “Atomic and molecular collision in the presence of strong radiation fields,” in: Electronic and Atomic Collisions, N. Oda and K. Takayanagi (eds.), North-Holland, Amsterdam (1980), pp. 683–695.

    Google Scholar 

  12. W. R. Green, J. Lukasik, J. R. Willison, et al., “Measurement of large cross sections for laser-induced collisions,” Phys. Rev. Lett.,42, 970–973 (1979).

    Google Scholar 

  13. G. Moe, A. C. Tam, and W. Happer, “Absorption studies of eximer transitions in Cs-noblegas and Rb-noble-gas molecules,” Phys. Rev. A,14, 349–358 (1976).

    Google Scholar 

  14. B. Sayer, M. Ferray, and J. Lozingot, “Experimental detection of the Cs(7s)-rare-gas potential energy curves and of the 6S-7S collision induced oscillator strength,” J. Phys-B,12, 227–240 (1979).

    Google Scholar 

  15. J. G. Eden, B. E. Cherrington, and J. T. Verdeyen, “Optical absorption and fluorescence studies in high pressure Cs-Xe mixtures,” IEEE J. Quantum Electron.,QE-12, 698–704 (1976).

    Google Scholar 

  16. H. T. Powell, J. R. Murrey, and C. K. Rodes, “Laser oscillation on the green bands of XeO and KrO,” Appl. Phys. Lett.,25, 730–732 (1974).

    Google Scholar 

  17. Spectroscopy of Interacting Molecules [in Russian], Leningrad State Univ. (1970).

  18. D. L. Cunningham and K. C. Clark, “Rates of collision-induced emission from metastable O(1S) atoms,” J. Chem. Phys.,61, 1118–1124 (1974).

    Google Scholar 

  19. B. Sayer, J. P. Visticot, and J. Pascale, “Band profiles associated with induced dipole transitions in alkali-rare gas systems,” J. Phys. (Paris),39, 361–368 (1978).

    Google Scholar 

  20. E. Czuchaj, “Study of collision-induced absorption in dipole electronic transitions of alkali-rare gas atom pair,” Z. Phys. A,298, 237–247 (1980).

    Google Scholar 

  21. A. Gallagher and T. Holstein, “Collision-induced absorption in atomic electronic transitions,” Phys. Rev. A,16, 2413–2431 (1977).

    Google Scholar 

  22. F. Biraben, B. Cagnac, E. Giacobino, and G. Grynberg, “Broadening and shift of the sodium 3S-4D and 3S-5S two-photon lines perturbed by noble gases,” J. Phys. B,10, 2369–2374 (1977).

    Google Scholar 

  23. C. Y. Wu and W. C. Stwalley, “Calculated pressure broadening and shift for alkali-metal atoms perturbed by rare gases: two-photon S-S transition,” Phys. Rev. A,18, 1066–1071 (1978).

    Google Scholar 

  24. P. F. Liao, J. E. Bjorkholm, and P. R. Berman, “Study of collisional redistribution using two-photon absorption with nearly-resonant intermediate states,” Phys. Rev. A,20, 1489–1494 (1979).

    Google Scholar 

  25. A. Ben-Reuven, J. Jortner, L. Klein, and Sh. Mukamel, “Collisional broadening in two-photon spectroscopy,” Phys. Rev. A,13, 1402–1410 (1976).

    Google Scholar 

  26. G. Nienhuis, “Saturated two-photon absorption by atoms in perturber gas,” Physica BC,101, 259–270 (1980).

    Google Scholar 

  27. P. L. DeVries, C. H. Chang, T. F. George, et al., “Na + Xe collisions in the presence of two nonresonant lasers,” Chem. Phys. Lett.,69, 417–418 (1980).

    Google Scholar 

  28. B. D. Fainberg, “Theory of lines forbidden in Raman scattering that are induced by collision,” Zh. Eksp. Teor. Fiz.,69, 1936–1942 (1975).

    Google Scholar 

  29. R. Samson and A. Ben-Reuven, “Theory of collisional-induced forbidden Raman transition in gases. Application to SF6,” J. Chem. Phys.,65, 3586–3594 (1976).

    Google Scholar 

  30. R. Samson, R. A. Pasmander, and A. Ben-Reuven, “Molecular theory of optical polarization and light scattering in dielectric fluids. I. Formal theory,” Phys. Rev. A,14, 1224–1237 (1976).

    Google Scholar 

  31. P. A. Apanasevich and A. P. Nizovtsev, “Two-photon transitions in a system of colliding particles,” Kvantovaya Elektron.,6, 575–581 (1979).

    Google Scholar 

  32. J. C. White, “Observation of multiphoton-laser-induced collisions,” Opt. Lett.,6, 242–244 (1981).

    Google Scholar 

  33. P. A. Apanesevich, Principles of the Theory of the Interaction between Light and Matter [in Russian], Nauka i Tekhnika, Minsk (1977).

    Google Scholar 

  34. N. B. Delone and V. P. Krainov, Atom in a Strong Light Field [in Russian], Atomizdat, Moscow (1978).

    Google Scholar 

  35. N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  36. S. Kelikh, Molecular Nonlinear Optics [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  37. A. D. Buckingham, “Permanent and induced molecular moments and long-range intermolecular forces,” Adv. Chem. Phys.,12, 107–142 (1967).

    Google Scholar 

  38. L. D. Landau and E. M. Lifschitz, Quantum Mechanics [in Russian], Vol. 3, Fizmatgiz, Moscow (1963).

    Google Scholar 

  39. R. E. Walkup, “Exponentially decreasing collision-broadened line shapes,” Phys. Rev. A,25, 596–599 (1982).

    Google Scholar 

  40. B. M. Smirnov, Asymptotic Methods in the Theory of Atomic Collisions [in Russian], Atomizdat, Moscow (1973).

    Google Scholar 

Download references

Authors

Additional information

Written at the request of the editorial board in connection with the 60th Anniversary of the formation of the USSR.

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 38, No. 1, pp. 5–21, January, 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apanasevich, P.A., Nizovtsev, A.P. Quasienergetic method in the theory of opticocollisional transitions. J Appl Spectrosc 38, 1–16 (1983). https://doi.org/10.1007/BF00659854

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00659854

Keywords

Navigation