Skip to main content
Log in

Internal oxidation of lithiated nickel

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

It is difficult to alloy lithium and nickel using conventional techniques. One alternative is ion implantation. Implantation of lithium in nickel, at 500°C to doses at which the solubility is exceeded, causes an unusual form of precipitation. Electron microscopy revealed the precipitates to have truncated octahedral shapes with {111} planes for sides, and {100} planes truncating the corners. They resemble voids and helium bubbles in nickel. The lithium precipitates on dislocations. The alloy was internally oxidized in order to obtain evidence for lithium presence in nickel. Electron diffraction analysis revealed the presence of LixNi1−xO compound with an ordered NaCl-type structure, forming topotaxially with the nickel, in thin film form, inside the octahedra. Attempts to fabricate the ordered LixNi1−xO were unsuccessful; only the disordered form could be produced. It was concluded that the presence of the crystallographic planes of nickel and/or the thin film oxide form are required for the formation of the ordered compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AIP Handbook, 3rd ed., D. E. Gray, ed. (McGraw-Hill, New York, 1972).

    Google Scholar 

  2. Y. Takeuchi, K. Mochizuki, M. Watanabe, and I. Obnita,Metall. 20(1), 2 (1960).

    Google Scholar 

  3. H. Pfeifer and K. Hauffe,Z. Metall. 43, 364 (1945).

    Google Scholar 

  4. E. J. W. Verwey, P. W. Haaijman, F. C. Romeijn, and G. W. van Oosterhoot,Philips Res., Rep. 5, 173 (1950).

    Google Scholar 

  5. G. Dearnaley,Treatise on Materials Science and Technology, Vol. 18, p. 257. (Ibid., 1980).Nucl. Instrum. Methods 182/183, 899 (1981).

    Google Scholar 

  6. P. D. Goode,Inst. Phys. Con. Ser. No. 28, 154 (1976).

    Google Scholar 

  7. Zhou Peide, F. H. Stott, P. P. M. Procter, and W. A. Grant,Oxid. Met. 16, 409 (1981).

    Google Scholar 

  8. B. J. Kestel,Ultramicroscopy 9, 379 (1982).

    Google Scholar 

  9. A. Taylor, J. R. Wallace, E. A. Ryan, A. Phillipides, and J. R. Wrobel,Nucl. Instrum. Methods 189, 211–217 (1981).

    Google Scholar 

  10. J. P. Biersack and L. G. Haagmark,Nucl. Instrum. Methods 174, 257 (1980).

    Google Scholar 

  11. B. J. Kestel, Polishing Methods for Metallic and Ceramic Transmission Electron Microscopy Specimens, ANL Pub. No. 80–120 (July 1981).

  12. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan,Electron Microscopy of Thin Crystals (Butterworths, London, 1965).

    Google Scholar 

  13. J. W. Eddington,Practical Electron Microscopy in Materials Science, Monograph 2, Maxmillan Philips Tech. Library, Eindhoven (1973).

    Google Scholar 

  14. R. W. G. Wyckoff,Crystal Structures, 2nd ed., Vol. 1, p. 242 (1965).

    Google Scholar 

  15. H. Riecke and R. Hoppe,Z. An. All. Chemie 392(3), 193 (1972).

    Google Scholar 

  16. J. C. Anderson and M. Schieber,Phys. Chem. Solids 25, 961 (1964).

    Google Scholar 

  17. Ibid.,Acta Cryst. 16, A21 (1963).

    Google Scholar 

  18. C. J. Toussaint,J. Appl. Cryst. 4, 293 (1971).

    Google Scholar 

  19. R. J. Moore and J. White,J. Mat. Sci. 9, 1401 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by the U.S. Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seshan, K., Baldo, P. & Wiedersich, H. Internal oxidation of lithiated nickel. Oxid Met 24, 1–15 (1985). https://doi.org/10.1007/BF00659594

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00659594

Key words

Navigation