Skip to main content
Log in

Adsorption and desorption of colloidal particles on glass in a parallel plate flow chamber—Influence of ionic strength and shear rate

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The adsorption and desorption rates of 736 nm diameter polystyrene particles on glass were studiedin situ using a parallel plate flow chamber and automated image analysis. Adsorption and desorption rates were measured simultaneously during deposition, enabling the determination of initial deposition rates, blocked areas per particle, desorption rate coefficients, and the number of adhering particles in the stationary state. Deposition experiments were done from suspensions with different potassium nitrate concentrations (1, 10 and 50 mM) and at varying shear rates (15 to 200 s−1). The initial deposition rate, the desorption rate, the blocked area per particle and the number of adhering particles in the stationary state showed major variations with the shear rate and the ionic strength of the suspension. At low ionic strength, the number of adhering particles showed an oscillatory behavior in time, presumably due to a varying interaction between particle and collector surface. Blocked areas, determined from deposition kinetics, ranged 705 to 2374 cross-sections at low ionic strength, and from 10 to 564 at high ionic strength and corresponded well with those estimated from local pair distribution functions which were obtained from an analysis of the spatial arrangement of the adhering particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dabros T, Van de Ven TGM (1982) J Colloid Interface Sci 89:232

    Google Scholar 

  2. Hinrichsen EL, Feder, Jøssang T (1986) J Statistical Ph 44:793

    Google Scholar 

  3. Varennes S, Van de Ven TGM (1987) PCH Phys Chem Hydrodyn 9:537

    Google Scholar 

  4. Schaaf P, Talbot J (1989) J Chem Phys 91:4401

    Google Scholar 

  5. Sjollema J, Busscher HJ, Weerkamp AH (1989) J Microbiol Methods 9:79

    Google Scholar 

  6. Van de Ven TGM (1989) Colloids Surf 39:107

    Google Scholar 

  7. Adamczyk Z, Zembala M, Siwek B, Warszynski P (1990) J Colloid Interface Sci 140:123

    Google Scholar 

  8. Meinders JM, Noordmans J, Busscher HJ (1992) J Colloid Interface Sci 152:265

    Google Scholar 

  9. Dabros T (1989) Colloids Surf 39:127

    Google Scholar 

  10. Sjollema J, Van der Mei HC, Uyen HM, Busscher HJ (1990) FEMS Microbiol Letters 69:263

    Google Scholar 

  11. Busscher HJ, Noordmans J, Meinders J, Van der Mei HC (1991) Biofouling 4:71

    Google Scholar 

  12. Adamczyk Z, Siwek B, Zembala M (1991) Biofouling 4:89

    Google Scholar 

  13. Hubbe MA (1985) Colloids Surf 16:227

    Google Scholar 

  14. Sharma MM, Chamoun H, Sita Rama Sarma DSH, Schechter RS (1992) J Colloid Interface Sci 149:121

    Google Scholar 

  15. Kallay N, Tomié M, Biškup B, Kunjasic I, Matijevié E (1987) Colloids Surf 28:185

    Google Scholar 

  16. Sjollema J, Busscher HJ, Weerkamp AH (1989) J Microbiol Methods 9:73

    Google Scholar 

  17. Brouwer WM, Zsom RLJ (1987) Colloids Surf 24:195

    Google Scholar 

  18. Sjollema J, Busscher HJ (1990) Colloids Surf 47:323

    Google Scholar 

  19. Meinders JM, Van der Mei HC, Busscher HJ (1992) J Microbiol Methods 16:119

    Google Scholar 

  20. Adamczyk Z, Van de Ven TGM (1981) J Colloid Interface Sci 80:340

    Google Scholar 

  21. Hull M, Kitchener JA (1969) Trans Faraday Soc 65:3093

    Google Scholar 

  22. Sjollema, J, Busscher HJ (1989) J Colloid Interface Sci 132:382

    Google Scholar 

  23. Hubbe MA (1987) Colloids Surf 25:325

    Google Scholar 

  24. Dahneke B (1975) J Colloid Interface Sci 50:89

    Google Scholar 

  25. Dahneke B (1975) J Colloid Interface Sci 50:194

    Google Scholar 

  26. Goldman AJ, Cox RG, Brenner H (1967) Chem Eng Sci 22:637

    Google Scholar 

  27. Goldman AJ, Cox RG, Brenner H (1967) Chem Eng Sci 22:653

    Google Scholar 

  28. Kallay N, Bišku B, Tomić M, Matijević E (1986) J Colloid Interface Sci 114:357

    Google Scholar 

  29. Reynolds PA, Goodwin JW (1987) Colloids Surf 23:273

    Google Scholar 

  30. Van de Ven TGM (1988) J Colloid Interface Sci 124:138

    Google Scholar 

  31. Dabros T, Van de Ven TGM (1983) Colloid Polym Sci 261:694

    Google Scholar 

  32. Malysa K, Dabros T, Van de Ven TGM (1986) J Fluid Mech 162:157

    Google Scholar 

  33. Dabros T, Van de Ven TGM (1992) Int J Multiphase Flow 18:751

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meinders, J.M., Busscher, H.J. Adsorption and desorption of colloidal particles on glass in a parallel plate flow chamber—Influence of ionic strength and shear rate. Colloid Polym Sci 272, 478–486 (1994). https://doi.org/10.1007/BF00659461

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00659461

Key words

Navigation