Skip to main content
Log in

Fracture behavior of core-shell rubber-modified crosslinkable epoxy thermoplastics

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The fracture behavior of a core-shell rubber (CSR) modified cross-linkable epoxy thermoplastic (CET) system, which exhibits high rigidity, highT g, and low crosslink density characteristics, is examined. The toughening mechanisms in this modified CET system are found to be cavitation of the CSR particles, followed by formation of extended shear banding around the advancing crack. With an addition of only 5 wt.% CSR, the modified CET possesses a greater than five-fold increase in fracture toughness (G IC) as well as greatly improved fatigue crack propagation resistance properties, with respect to those of the neat resin equivalents. The fracture mechanisms observed under static loading and under fatigue cyclic loading are compared and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yee AF, Pearson RA (1986) J Mater Sci 21:2462

    Google Scholar 

  2. Pearson RA, Yee AF (1986) J Mater Sci 21:2475

    Google Scholar 

  3. Lee H, Neville K (1967) Handbook of Epoxy Resins. McGraw-Hill, New York

    Google Scholar 

  4. Pearson RA, Yee AF (1989) J Mater Sci 24:2571

    Google Scholar 

  5. Bradley WL, Schultz W, Corleto C, Komatsu S (1993) Chap. 3 in Toughened Plastics I — Science and Engineering. Riew CK, Kinloch AJ (eds) Adv Chem Ser, 233, Amer Chem Soc, Washington, DC, p 317

    Google Scholar 

  6. Sue H-J (1991) Polym Eng Sci 31:275

    Google Scholar 

  7. Kinloch, AJ (1989) Chap 3 in Rubber-Toughened Plastics. Riew CK (ed) Adv Chem Ser, 222, Amer Chem Soc, Washington, DC, p 67

    Google Scholar 

  8. Bertram JL, Walker LL, Berman JR, Clarke JA (1986) US Patent 4,594,291

  9. Bauer R (1986) 18th International SAMPE Tech Conf, Oct 7–9

  10. Dewhirst KC (1988) Us Patent 4,786,668

  11. Schultz WL, Portelli GB, Jordan RC, Thompson WL (1988) Polym Preprint 29:136

  12. Bishop MT, Bruza KJ, Laman SA, Lee WM, Woo EP (1992) ACS Polymer Preprints 33(1):362

    Google Scholar 

  13. Covavisaruch S, Robertson RE, Filisko FE (1992) J Mater Sci 27:990

    Google Scholar 

  14. Burton BL, Swartz CA (1987) PMSE, Amer Chem Soc 57:201

    Google Scholar 

  15. Williams JG (1984) Fracture Mechanics of Polymers. John Wiley & Sons, New York

    Google Scholar 

  16. Henton DE, Pickelman DM, Arends CB, Meyer VE (1988) US Patent 4,778,851

  17. Sue H-J, Garcia-Meitin EI, Pickelman DM, Yang PC (1993) Chap 10 in Toughened Plastics I — Science and Engineering. Riew CK, Kinloch AJ (eds) Adv Chem Ser, 233, Amer Chem Soc, Washington, DC, p 259

    Google Scholar 

  18. Sue HJ, Pearson RA, Parker DS, Huang J, Yee AF (1988) Polym Preprint 29:147

    Google Scholar 

  19. Sue H-J (1991) Polym Eng Sci 31:270

    Google Scholar 

  20. Sue H-J, Yee AF, J. Mater Sci 28:2975

  21. ASTM Standard, E399-90

  22. Towers OL (1981) Stress Intensity Factor, Compliance. and Elastic η Factors for Six Geometries. The Welding Institute, Cambridge, England.

    Google Scholar 

  23. ASTM Standard, E647-90

  24. Paris PC (1964) Fatigue — An Interdisciplinary Approach. Proceedings 10th Sagamore Conf, Syracuse Univ Press, Syracuse, New York

    Google Scholar 

  25. Holik AS, Kambour RP, Hobbs SY, Fink DG (1979) Microstruct Sci 7:357

    Google Scholar 

  26. Sue H-J, Garcia-Meitin EI, Burton BL, Garrison CC (1991) J Polym Sci, Polym Phys Ed 29:1623

    Google Scholar 

  27. Nielsen LEJ (1969) J Macromol Sci C 3:69

    Google Scholar 

  28. Timm DC, Ayodeji AJ, Foral RF (1985) Br Polym J 17:227

    Google Scholar 

  29. Sue H-J (1992) J Mater Sci 27:3098

    Google Scholar 

  30. Moloney AC, Kausch HH, Kaiser T, Beer HR (1987) J Mater Sci 22:381

    Google Scholar 

  31. Huang Y, Kinloch AJ (1992) J Mater Sci 27:2763

    Google Scholar 

  32. Huang Y, Kinloch AJ (1992) J Mater Sci Letters 11:484

    Google Scholar 

  33. Sue H-J, Garcia-Meitin EI, Orchard NA (1993) J Polym Sci, Polym Phys Ed 31:595

    Google Scholar 

  34. Parker DS, Sue HJ, Huang J, Yee AF (1990) Polymer 31:2267

    Google Scholar 

  35. Sue H-J, Hoffman DW, unpublished work

  36. Hoffman DK, Arends CB (1987) US Patent 4,708,996

  37. Pearson RA, Yee AF (1991) J Mater Sci 26:3828

    Google Scholar 

  38. Hertzberg RW, Manson JA (1980) ‘Fatigue of Engineering Plastics. Academic Press, New York

    Google Scholar 

  39. Paris PC (1964) Fatigue — An Interdisciplinary Approach, Proceedings 10th Sagamore Conf, Syracuse Univ Press, Syracuse, New York

    Google Scholar 

  40. Karger-Kocsis J, Friedrich K (1992) Colloid Polym Sci 270:549

    Google Scholar 

  41. Ritchie RO, Yu W (1986) Short Crack Effects In Fatigue: A Consequence Of Crack Tip Shielding in Small Fatigue Cracks. Ritchie RO, Lankford J (eds) TMS-AIME, Warrendale, PA

    Google Scholar 

  42. Boyce ME, Argon S, Parks DM (1987) Polymer 28:1680

    Google Scholar 

  43. Sue H-J (1988) Mechanical Modeling and Experimental Observations of Toughened Rigid-Rigid Polymer Alloys. Ph D Thesis, The University of Michigan, Ann Arbor

    Google Scholar 

  44. Yee AF (1986) Modifying Matrix Materials for Tougher Composites in “Toughened Composites” STP 937, Johnston NJ (ed) ASTM, Philadelphia, 383

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sue, H.J., Bertram, J.L., Garcia-Meitin, E.I. et al. Fracture behavior of core-shell rubber-modified crosslinkable epoxy thermoplastics. Colloid Polym Sci 272, 456–466 (1994). https://doi.org/10.1007/BF00659459

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00659459

Key words

Navigation